

WT1600

THE NEXT GENERATION POWER ANALYZER

Product Tutorial

WT1600 PRODUCT TUTORIAL

Table of Contents:

A.) Overview & Objectives	3
B.) Power Meter Connections	3
C.) Basic Setup for Power Measurement	
Setting Ranges	4
Setting Crest Factor	5
Setting Wiring	6
Setting Display Items	7
Setting Frequency Items	8
Setting Update Rate	9
Displaying Waveforms	10
Wave Mapping	11
Printing Measurement Data	12
D.) Harmonic Measurements	
Harmonic Setup	13
Printing Harmonic Data	14
Vector Display	15
Other Harmonic Display Formats	15
E.) Integrator Function	
Integrator Modes & Measurement Functions	16
Normal Mode	17
F.) User Defined Functions	
Set up and Applications	18
G.) Trend Functions	
Trend Overview	19
Trend Setup	20
H.) Saving Data	
Saving Data to Memory	21
Saving Data to File	22
Sample Excel Data File	23
Data Logging Function	24
I.) Motor Function Setup	
Speed & Torque Scaling	25

WT1600 POWER ANALYZER DEMONSTRATION GUIDE

A.) OVERVIEW & OBJECTIVES

The following is a basic demo procedure for the WT1600 Power Analyzer. This demo uses the power meter's own power supply for the load. This demo can easily be done in a conference room or lab without having to hook up to the customer's load.

B.) POWER METER CONNECTION Measuring consumption power of the WT1600 Power analyzer

- 1. Connect the Power Meter using the load cord. Plug the **Banana** plugs into the **Voltage** input terminals of Element # 1. Connect the **Spade** lugs to the **Current** terminals of element # 1. Make sure all connections are tight.
- 2. Plug the power meter power cord into the load cord.
- 3. Turn on the power meter.

C.) BASIC SETUP FOR POWER MEASUREMENT

SETTING RANGES

Urms1	115.38 V	150V 1A	YOKOGAWA Range Element Object Element 1	1. Select Element 1 to 6
Irms1	0.4583 A		U Range Up Exec	
P 1	37.26 W		U Range	2. Select Voltage Range
λ1	0.7046		Terminal	3 Select Current input
fU1	$60.002~\mathrm{Hz}$		Direct Sen	Terminal
I+pk1	1.1778 A		I Range Up Exec	
Q1	37.52 var		I Range	4. Select Current Range
S1	52.87 VA			
ebug Counter 15509	2002/0	7/01 14:53	Copy Exec	5. Copy Settings to other Like Input Elements

- 1. **Press <RANGE>** Button.
- 2. Press Element Object "Soft Key" and Select Element 1.
- 3. **Press** "Soft Key" next to **U** (**Voltage**) **Range Up** OR **U** (**Voltage**) **Range Down**. Voltage range for Element 1, U1, is displayed at the top of the screen. Set to **150 V**.
- 4. Next **Select Terminal** by pressing the "Soft Key." This is the Current input Terminal. **Direct** is for connecting a Current Source to the Large Black Terminals. **Sen** is the Sensor Input Terminal. This terminal is for a mV signal from a Shunt, or a Voltage signal from a Current Sensor. Select **Direct** for this demo.
- 5. **Press** "Soft Key" next to **I** (**Current**) **Range Up** OR **I** (**Current**) **Range Down**. Current range for Element 1, 11, is displayed at the top of the screen under the voltage range indication. Set to **1 A**.
- 6. If you want to copy the settings you just made for Element 1 to all the other Elements, **Press** the **Range Copy Exec** "Soft Key".
- 7. If you want different Ranges on the other Elements, **Select** the Element Number, and set the Voltage and Current ranges.
- 8. To see the Ranges for each of the Elements, **Press** <**ESC**> Button. The setup menu will disappear.

CREST FACTOR SETUP

WT1600's with Firmware Version 3.21 or higher have a Setup function for selecting Full Scale Crest Factor of 3 or 6.

uover:	spa:	01:	1500	IUKUGHWH 🗸
Iover :	Trq:-	11:	1A	Config Message
Urms1	120.9	$2\mathrm{V}$		ENG
Irms1	0.590	1 A		LCD Brightness 2
P 1	49.72	2 W		Crest Factor
λ1	0.696	9		CF3 CF6
S1	71.35	5 VA		
Q1	51.17	7 var		Key Lock DFF ON
fU1	59.99	6 Hz		
CfI1	2.668	3		

- 1. Press <MISC> key.
- 2. Press Config "Soft key."
- 3. Press Crest Factor "Soft Key" to select CF3 or CF6.

Crest Factor is a ratio of the Peak Value of the waveform to the RMS Value of the waveform. The Crest Factor rating of 3 or 6 is the rating at the Full Scale value of Voltage or Current.

RANGE SELECTION								
	CF3 Setting	1		CF6 Setting	3			
V Range	I Range	Sen Range	V Range	I Range	Sen Range			
		5 Amp Inp	ut Element					
Auto	Auto	10 V	Auto	Auto	5 V			
1000 V	5 Amp	5	500 V	2.5 Amp	2.5			
600	2	2.5	300	1	1			
300	1	1	150	500 mA	500mV			
150	500 mA	500mV	75	250	250			
100	200	250	50	100	125			
60	100	100	30	50	50			
30	50	50	15	25	25			
15	20		7.5	10				
10	10		5	5				
6			3					
3			1.5					
1.5			0.75					
	•	50 Amp Inj	out Element					
Auto	Auto	10 V	Auto	Auto	5 V			
1000	50 Amp	5	500 V	25 Amp	2.5			
600	20	2.5	300	10	1			
300	10	1	150	5	500mV			
150	5	500mV	75	2.5	250			
100	2	250	50	1	125			
60	1	100	30	0.5	50			
30		50	15		25			
15			7.5					
10			5					
6			3					
3			1.5					
1.5			0.75					

WIRING

- 1. **Press <Wiring>** Button.
- 2. **Press <SELECT>** Button to display the Pattern configurations.
- 3. Turn the Rotary Knob to highlight the wiring configuration desired. Press <SELECT>
- 4. Set up a 3-Phase 3-Wire Configuration. How many ways can you do this setup?
 - a. Highlight the Pattern line. Press <SELECT> Button.
 - b. Turn the Rotary Knob to highlight [1P3W/3P3W] [1P3W/3P3W] [1P3W/3P3W]. Press <SELECT> Button. Note that Element Groups 1 & 2, 3 & 4, and 5 & 6 are used for the 3-wire connection.
 - c. Turn the Rotary Knob to highlight ΣA . Press <SELECT> Button to highlight **3P3W.** Repeat for ΣB and ΣC . Press <ESC> Button to clear.
 - d. Press <Wiring>, highlight the Pattern line. Press <SELECT> Button.
 - e. There are Four (4) different wiring configurations that can be used for 3P3W.
- 5. Set up a 3-Phase 4-Wire Configuration.
 - a. Press <Wiring>, highlight the Pattern line. Press <SELECT> Button.
 - b. Turn the Rotary Knob to highlight [1P3W/3P3W] [3P4W/3V3A] [1P2W]. Press <SELECT> Button.
 - c. Turn the **Rotary Knob** to highlight ΣB .
 - d. Press <SELECT> Button to highlight 3P4W. Press <ESC> Button to clear.
 - e. There are Three (3) different wiring configurations that can be used for 3P4W.
- 6. For this demo set up a Single Phase Two Wire Configuration for Element 1.

SETTING DISPLAY ITEMS

	Rate: 500msec	упкосаша 🔶	· · · · · · · · · · · · · · · · · · ·
		Display Format	
Urms 1	117.16 V	Numeric	1. Set Display Format
Irms1	0.4536 A	Item Amount 8(4)	2. Select number of measurement items to be displayed
P 1	37.48 W	Norm Item No.	
λ1	0.7053		
fU1	59.994 Hz	Disp Items	3. Menu to Setup the Numeric Items to be Displayed
I+pk1	1.2261 A		
Q1	37.68 var	Page Up	4 Sarolla Paga UD and DOWN for
S1	53.14 VA		Viewing Additional Numeric
Debug Counter 2832	2002/07/07 10:27	Scroll Exec	

- 1. **Press <DISPLAY>** Button.
- 2. First select the **Display Format** style for viewing the measured data. **Press** the "Soft Key" next to **Format**.
- 3. Turn the Rotary Knob to highlight the desired Display Format. Press <SELECT>.
- **4. Press Format** "Soft Key" again and Turn the **Rotary Knob** to **Information** and **Press <Select>**.
- **5. Press** the "Soft Key" next to **Power Element, Trend, D/A Output** and **Motor Element**. An information overview is displayed for each of the functions selected. Note that you cannot make any changes to the settings from these displays.
- 6. **Press Format** "Soft Key" and turn the **Rotary Knob** to highlight **Numeric** Display Format. **Press <SELECT>**.
- 7. **Press Item Amount** "Soft Key" The Number in (_) is the amount of Numeric items displayed with a split screen, such as Numeric + Wave. Select 8(4) for this exercise.
- 8. Press Numeric Disp Items "Soft Key".
- 9. Press Norm Item No. "Soft Key" and turn Rotary Knob to display 1.
- 10. Press Function "Soft Key." Turn Rotary Knob to highlight Urms. Press <SELECT>.
- 11. Press Element "Soft Key." Highlight Element 1 and Press <SELECT>.
- **12.** Repeat this procedure to setup the display as shown above.
- 13. Press <ESC> Button twice to clear the Display Menus.

SETTING FREQUENCY ITEMS

- 1. Up to three different Frequency Items, or Sources can be measured with the WT1600.
- 2. The **Freq Item** in the **MEASURE** Menu must be set to match the Frequency Sources selected in **Numeric Display Items** menu.
- **3. Press <MEASURE>** Button.
- 4. Press Freq Item "Soft Key"
- 5. Turn the **Rotary Knob** to highlight the Frequency Items to be measured. **Press <SELECT>** Button.
- 6. For this demo, select U1 and I1.
- 7. **Press <ESC>** Button twice to exit this menu.

8. SETTING UPDATE RATE

	Rate: 50msec	YOKOGAWA 🔶 Update Rate	Update Rate is displayed at Top
Urms1	123.22 V		Right of screen.
Irms1	0.4396 A	Update Rate Up Exec	Increases the Data Update Rate.
P 1	38.61 W		
λ1	0.7137		
fU1	60.007 Hz	Down Exec	Decreases the Data Update Rate
I+pk1	1.2296 A		
Q1	37.89 var		
S 1	54.10 VA		
Debug Counter 13372	2001/03/31 16:45	5:49	

- 1. Press <UPDATE RATE> Button
- 2. This function is the Data Update Rate, *NOT ALWAYS* the Display Update Rate.
- 3. Press the Update Rate Up Exec "Soft Key" to Increase the Data Update Rate
- 4. The fastest Data Update Rate is 50msec, 20 readings per second.
- 5. Press the Update Rate Down Exec "Soft Key" to Decrease the Data Update Rate
- 6. The slowest Data Update Rate is 5 sec.
- 7. Note 1: The fastest Display Update rate is 100 msec, even when the Data Update Rate is set to 50 msec.
- **8.** Note 2: When the WAVE Sampling is turned ON, the fastest Display Update rate is 500 msec, regardless of the Data Update setting.
- **9.** Note 3: The Data Update Rate *CANNOT* be changed when in the Harmonic Measurement Mode. This update rate is set automatically, and is determined by the fundamental frequency of the PLL source and the Window Width.

Yokogawa 🔶

WT1600 Product Tutorial

DISPLAYING WAVEFORMS

1. Press <DISPLAY> Button. Select Numeric+Wave.

- 2. Press Wave Setting "Soft Key"
- 3. Press Wave Format "Soft Key"
- 4. Press Dual "Soft Key" for this demo.
- 5. Press Wave Display "Soft Key"
- In the Wave Display Window, turn the Rotary Knob to highlight the Waveform to be displayed. Press <SELECT> Key to turn on the desired waveform.
- 7. Press <ESC> Button to exit this menu.

9. Press <WAVE> Button.

λ1

10. Press Wave Sampling "Soft Key" to select ON.

0.709

- 11. Turn Rotary Knob to adjust Time/div. Set to 10ms for this demo.
- 12. Press Trigger "Soft Key." Setup the following Trigger conditions:
- **13. Mode:** Auto **Source:** U1 **Slope: Cartering** Level: 10%
- **14. Press <UPDATE RATE>** Key. Change the Update Rate and observe the display. Also note the maximum Time/Div as the Update Rate is changed.

 \wedge

DN

ΠN

Graticu1e

Scale Value

Trace Label

. Wave Mapping

OFF

DFF

WAVE MAPPING

- 4. Auto: The waveforms that are turned ON for display are assigned a graph position in order from the top graph down. The waveforms are assigned in sequence U1, I1, U2, I2, U3, I3, ... if a waveform is turned Off, the next waveforms will move up in sequence.
- 5. Fixed: This fixes the waveforms to their assigned graph location in the sequence U1, I1, U2, I2, ... if a waveform is turned Off, the display sequence of the other waveforms does not change.
- 6. User: The waveforms can be assigned arbitrarily by using the Wave Mapping programming table. Note that the Wave Mapping program applies only when User is selected.
- 7. Press <DISPLAY> Button then Press Wave Setting "Soft Key." Press Wave Mapping "Soft Key" to display the menu.
- 8. Turn Rotary Knob to highlight Mode. Press <SELECT> to change Mode from Auto to Fixed to User.
- To change the User Wave Mapping program, turn the Rotary Knob to highlight a function such as U1. Press <SELECT>. Turn the Rotary Knob to select graph 0, 1, 2, or 3.
- 10. Wave Format Single displays graph 0 only. Wave Format Dual displays graphs 0 and 1. Wave Format Triad displays graphs 0, 1, and 2. Wave Format Quad displays graphs 0, 1, 2, and 3.

Yokogawa 🔶

WT1600 Product Tutorial

		Yokogawa 🔶
Urms1	117.38 V	₩U1 150V 11 1A Integ:Reset
Irms1	0.4678 A	UZ 150V IZ 1A Integ:Reset
P 1	37.88 W	U3 150V I3 1A
λ1	0.6898	Integ:Reset
fU1	60.002 Hz	
I+pk1	1.3805 A	
Q1	39.75 var	
S1	54.91 VA	
bug Counter 9450 TEST 1	2001/04/03	11:30:20

PRINTING MEASUREMENT DATA

A. SCREEN COPY:

- 1. The **<COPY>** Button provides a Screen Copy to a File on the Standard Floppy Disk, or to the Built –In Printer or a Network Printer via Ethernet if these options are installed.
- 2. Setup the Display in the format you want to copy.
- 3. Press <SHIFT> <MENU> Buttons. Press Copy To "Soft Key" and then Press Printer
- **4.** You can add a **Comment** to the Screen that will also be printed. **Press Comment** "Soft Key" and enter text from the keyboard.
- 5. When you are ready to Print, **Press** <**ESC**> Button. This will clear the set up menu and display the Range Setting information on the screen like example above. **Press** <**COPY**>
- 6. To make a screen copy to the Floppy, **Press Copy To** "Soft Key" and then **Press File** "Soft Key." **Press Format** "Soft Key" and select format style using "Soft Keys."
- 7. Press File Name "Soft Key." Turn the Rotary Knob to highlight File Name. Press <SELSCT> Button. Use the keyboard to enter a file name. Press <ESC> to clear menu.
- **8. Press <COPY>** Button to copy the screen image to a floppy disk.

B. NUMERIC DATA LIST:

- 1. Press <SHIFT> MENU> Buttons. Press Copy to "Soft Key" and select Printer.
- 2. Press List Item "Soft Key." Turn Rotary Knob to highlight All OFF. Press <SELECT>. Turn Rotary Knob to highlight Element 1, Press <SELECT>.
- Turn Rotary Knob to highlight the measurement functions to print. As an example, highlight Urms, Press <SELECT>. Select other Measurement items such as Irms, P, S, Q, λ, FreqU. Press <ESC> Button to clear this menu.
- 4. Press Print Data List Exec "Soft Key."

Yokogawa 🔶

WT1600 Product Tutorial

D.) HARMONIC MEASUREMENTS HARMONIC SETUP

	U	over:= = = •		PLL Src	PLL Src: U1		
	I	over := = = •				Harmonics	
						Mode	
U1	116.41	l v	P1	62.79	W	OFF DN	
U1 (1)	116.28	3 υ	fU1 (1)	59.991	Hz	∢ Ubject ΣA	
I1	0.7468	З "	Uthd1	4.81	×	PLL Source Up Exec	
I1 (3)	0.4167	7 _А	Ithd1	64.68	×	BLL Source	
Bar U 1	1.000kV	(los Scale)	C 1 = 100	Y1+ ∃	116.28 V	Down Exec	
-				Y1×	1.02 V		
				4Y1	115.26 V	Min Order	
	• 100.04V -					103	
Bar I 1	10.00 A	(los Scale)	(1 = 100)	. :	:	Thd Formula	
				Y2+ : :	0.5696 A		
+				YΖ×	0.0932 A	1/Total	
				4Y2	.0.4764 A		
	11.			order+: 1	order ×: 7		
		lunn				8192	
UCnt 1	219 T Cnt	974		2001/04	/11 02:20:37		

Mode turns Harmonics OFF & ON
Object is the Element Group as set in the Wiring menu
Sets the Phase Lock Loop Source to any one of the Voltage or Current Inputs or to External Clock source.
Sets the Maximum Harmonic Order for use in THD Calculation
Sets one of two methods for calculating THD.
Sets one of three Window Widths for FFT Calculation

- 1. Press <HARMONICS> Button.
- 2. Press Mode "Soft Key." Turns Harmonic Measurement mode ON.
- 3. Press Object "Soft Key." Turn Rotary Knob to select the Element Group as set in the Wiring menu. Set to ΣA for this demo.
- 4. The PLL Source needs to be a relatively clean waveform. For this demo select Voltage on Element 1. **Press** the "Soft Keys" to display **PLL Src: U1** at the top of the screen.
- **5.** Harmonic Order, THD Formula, and Window Width can be left at the default settings or changed to your preference. Use the "Soft Keys" to change settings.
- 6. Press <DISPLAY> Button. Press Format "Soft Key" and select Numeric+Bar.
- 7. Press Item Amount "Soft Key." Select 16(8) with the "Soft Key."
- 8. Press Numeric Disp Items "Soft Key." Set display items similar to the example.
- Press <DISPLAY> Button again to return to Display Menu. Press Bar Setting "Soft Key." Press Bar Format "Soft Key." Select Dual or Triad for this demo.
- 10. Press Bar Item No. "Soft Key." Turn Rotary Knob and set to 1.
- **11.** Now **Press Function** "Soft Key." This selects the Harmonic Spectrum function to be displayed. Turn **Rotary Knob**, highlight **U** (Voltage), and **Press SELECT>**.
- 12. Press Element "Soft Key." Turn Rotary Knob, highlight Element 1, Press <SELECT>.
- 13. Repeat Steps 11 & 12 to set up the functions for Bar Display 2 and 3.
- **14. Press Order** "Soft Key." This sets the **Start** and **End Order** to be displayed. This works as a "Zoom" function for the Bar Graph Display.
- 15. Press <SHIFT> then <CURSOR>. Press Bar Cursor "Soft Key" to ON.
- 16. Use the Rotary Knob to move Cursor 1, Bar C1 +, and Cursor 2, Bar C2 X.

PRINTING HARMONIC DATA

		Uover:		-	PLI	L Src:	U1	Yoxogawa 🔶
		Iover:		-				Display
		*****	ŧU1 Li	st ****	жжжж	I 1 L	ist ****	 Format
		Or.	U[V]	Hdf [×]	Or.	I [A] I	Hdf [%]	
PLL	U1		117.78			0.7311		Numeric+Bar
Freq	<u>5</u> 9.997 H	z dc	0.03	0.02	dC	0.0027	0.37	
		1	117.65	99.89	1	0.5604	76.66	Item Amount
U1	117.78 V	2	0.02	0.02	2	0.0084	1.15	
I1	0.7311 A	3	3.84	3.26	3	0.4058	55.51	Dual List
P1	62.74 W	4	0.04	0.04	4	0.0081	1.11	
S1	66.21 V	A 5	3.78	3.21	5	0.1981	27.10	
Q1	21.14 V	ar 6	0.03	0.03	6	0.0043	0.59	List Items
λ1	0.9477	7	0.81	0.69	7	0.0918	12.55	
ø1	18.62 °	8	0.07	0.06	8	0.0040	0.55	
Uthd1	4.70 %	9	0.74	0.63	9	0.0683	9.34	🎱 Order
Bap 11 1	1 00060	(log S	ale) (1 - 52)			•	
<u> </u>				1	Y1+		17.65 V	1
					¥1×		0.81 V	
					4Y1	1	16.83 V	
ar U	10.0-1		_		_	_		Bar
Bar I I	10.00 A	(los So	ale) (1 = 52)				Setting
					YZ+	0	.5604 A	
	× ·				YZ× !···		.0918 A	
	8 8 8 9			<u> </u>	4Y2		.4687 A	Page Up
Bare	10.0084			1 - 52)				Scroll Exec
					Y3+		61.29 ⊌	
	<u> </u>			<u>: : :</u> : :	Y3× :		0.07 W	
	^±1.000 ₩				4Y3		61.72 W	Page Down
Ban P 1	-10.00kW				order+	: 1 0	rder×: 7	Scroll Exec
U Cnt 5	5434 T Cnt	5077			200	01/04/1	1 03:35:56	

A. SCREEN COPY:

- The <COPY> Button provides a Screen Copy to a File on the Standard Floppy Disk, or to the Built –In Printer or a Network Printer via Ethernet if these options are installed.
- **2.** Setup the Display in the format you want to copy.
- 3. Press <SHIFT> <MENU> Buttons. Press Copy to "Soft Key" and then Press Printer.
- **4.** When you are ready to Print, **Press** <**ESC**> Button. This will clear the set up menu and display the Range Setting information on the screen. **Press** <**COPY**>.
- **B.** NUMERIC DATA LIST: Prints a complete list of all the Harmonic Data
- 1. Press <SHIFT> <MENU> Buttons. Press Copy to "Soft Key", and select Printer.
- 2. Press List Item "Soft Key." Turn Rotary Knob to highlight Numeric/Bar menu. Press <SELECT> Button to highlight Numeric.
- 3. Turn Rotary Knob to highlight Element 1. Press <SELECT> to highlight selection.
- Turn Rotary Knob to highlight the measurement function to print. Highlight I, and Press <SELECT>. Make sure the other functions are turned OFF. Press <ESC> Button to clear this menu.
- 5. Set the Maximum Harmonic Order before you print the Data List. Press
 <HARMONICS> Button. Turn Rotary Knob to set Max Order. The order can be set to any value from 1 to 100. Set to 50 for this demo
- 6. Press <SHIFT> <MENU> Buttons. Press Print Data List Exec "Soft Key."

C. BAR GRAPH:

- 1. Press List Item "Soft Key." Turn Rotary Knob to highlight Numeric/Bar menu. Press <SELECT> Button to highlight Bar.
- 2. Follow the above instructions to setup and print the Bar Graph Harmonic spectrum.

VECTOR DISPLAY

- 1. Press <DISPLAY> Button. Press Format "Soft Key." Turn Rotary Knob to highlight Vector. Press <SELECT>.
- 2. Press Numeric "Soft Key" to ON position.
- **3.** The **Vector** Display shows the Phase Angle between the Fundamental Voltage and Current waveforms.
- **4.** Φ U1 I1 is the Phase Angle between the Fundamental Voltage of Element 1 and the Fundamental Current of Element 1.
- 5. $\lambda 1(1)$ is the Fundamental or **Displacement** Power Factor.

This value is the **Cosine** Φ (U1 – I1). Another way to calculate Displacement Power Factor $\lambda 1(1) = P1(1) / S1(1)$

6. To magnify the Vectors, **Press Mag** "Soft Key." Turn the **Rotary Knob** to magnify the Voltage, **U**, and Current, **I**, vector display.

OTHER HARMONIC DISPLAY FORMATS

- 1. Press <DISPLAY> Button. Press Format "Soft Key."
- 2. The following **Display Formats** are available in the Harmonics Mode:

Numeric	Wave
Bar	Vector
Trend	
Numeric+Wave	Numeric+Bar
Numeric+Trend	Wave+Bar
Wave+Trend	Bar+Trend

3. Turn Harmonics Mode OFF. **Press <HARMONICS>** Button. **Press Mode** "Soft Key" to OFF Position.

INNOVATION FORESIGHT

Yokogawa 🔶

WT1600 Product Tutorial

E.) INTEGRATOR FUNCTIONS

INTEGRATOR MODES & MEASUREMENT FUNCTIONS

						Yokogawa 🔶	
						Mode	
Time1	0:01:0	0	¥p+1	631.92	ոահ	Norma 1	Four Integration Modes
Wp1	618.70	ոահ	₩p-1	-13.224	տ⊎հ	Continuous	Select by Pressing "Soft Keys" next to desired function.
q1	7.2564	mAh	q+1	7.2564	MAh	R-Norma 1	
Time2	0:02:0	0	q–1	0.00	Ah	P-Cont inuous	
⊌р2	-8.7711	տահ	Tíme3	0:01:3	0	A Current Mode	
q2	14.546	mAh	₩рЗ	-6.5930	mWh	RMS	
P1	38.20	W	qЗ	10.903	mAh		
Irms1	0.4424	A	fU1	60.006	Hz		
Debug Ca	unter 4798			2001/04/	02 12:56:5	1	

1. Press <SHIFT> then <INTEG> Buttons. Press Mode "Soft Key."

- **2.** The WT1600 has four Integrator Operation Modes like the other WT Series Power Analyzers.
 - Normal: This is the Default Mode and the simplest and easiest to demonstrate. In this mode Integration starts when the **START** button is pressed, and continues until the integration time reaches the maximum, or when the **STOP** button is pressed. If the Timer is set, the integration will stop at the preset time.
 - **Continuous:** Integration starts when the **START** button is pressed. When the timerpreset time is reached, the integrated value and integration time are reset automatically and restarted immediately.
 - **R-Normal:** This is the same as the **Normal** Mode with the addition of a **Real Time** Start/Stop Timer.
 - **R-Continuous:** This is the same as the **Continuous** Mode with the addition of a **Real Time** Start/Stop Timer.
- **3.** The following is a definition of the Integrator Measurement Functions:
 - Wp(_): Total Watt-Hours for the Element or Group of Elements set inside (_).
 - **q(_): Total** Amp-Hours for the Element or Group of Elements set inside (_).
 - Wp+(_): Positive Watt-Hours.
 - **Wp-(_): Negative** Watt-Hours. In an AC Circuit, this is the Reactive Power component. In a DC Circuit this is the Reverse Power Flow.
 - **q+(_): Positive** Amp-Hours. This is the Positive Flow of Current, AC or DC.
 - q-(_): Negative Amp-Hours. This is the Total Negative Flow of Current, AC or DC
 - Wp(1) = Wp+(1) + Wp-(1)
 - q(1) = q+(1) + q-(1)

Normal Mode Integration

- **1.** The following is a simple demo of the Integration Function using the **Normal** Integration Mode.
- 2. Press <DISPLAY> Button. Press Numeric Disp Items "Soft Key."
- **3.** Add Integrator Measurement items to your display as shown in the example.
- 4. Press <SHIFT> and <INTEG> Buttons. Select Normal Mode with the "Soft Keys."
- 5. Press Integrator <START> Button. The Integrator will run until you Press Integrator <STOP> Button.
- 6. The **STOP** Function is like a Pause. You can **Press <START>** again and the integrator will continue.
- Press <SHIFT> and <RESET>. This operation Resets the Integrator Timer to Zero and is <u>REQUIRED</u> to fully STOP the Integration function.
- **8. Press Timer Setting** "Soft Key." This sets a time in **Hours: Minutes: Seconds** for the Integrator to run then automatically stop and hold the final values.
- 9. Set a short Integration time. Turn the Rotary Knob to highlight "*Minutes*." Press
 <SELECT> Button. Turn the Rotary Knob to set "*Minutes*" and Press
 <SELECT>. To set "*Seconds*" turn Rotary Knob to highlight "*Seconds*" Press
 <SELECT> and set value. Press <ESC> Button to clear menu.
- 10. Press Integrator <START>. When finished, Press <SHIFT> and <RESET>.
- 11. Press Independent Control "Soft Key" to ON Position.
- **12.** This function allows setting separate Integration Timers for each Element.

F.) USER DEF	INED FUNCTIONS	5
Uover:= Iover:=	Rate: 500msec	YOKOGAWA 🔶 Measure
Urms 1	117.89 V	Freq Item
Irms 1 User I	0.7501 A efined Function 1-4	↓ User Defined
Function 1 OFF DN	Umit <mark>V % Reg</mark>	d Measure
Expression	(URMS(E1)-120)/120×100	S Formula
Function 2 OFF DN	Unit 📕 LOSS	Urms×Irms
Expression Function 3 OFF DN	P(E1)-P(E2) Unit <mark>H2 % Reg</mark>	c Formula
Expression	(fU(E1)-60)/60×100	Phase
Function 4 OFF DN	Unit V/HZ	0 Lead/Lag
Expression	UMN(E1)/fU(E1)	nc Measure
J U Cnt 3792 T Cnt 1732	2001/04/17 22:15	ster Slave

User Defined function permits writing up to four Math functions for advanced analysis.

- 1. Press <MEASURE> Button. Press User Defined "Soft Key."
- 2. Turn Rotary Knob to highlight OFF ON. Press <SELECT> to ON position.
- 3. Turn Rotary Knob to highlight Unit, and Press <SELECT>.
- **4.** Use **Rotary Knob** to highlight keyboard character then **Press <SELECT>**. When done, highlight **ENT** and **Press <SELECT>**.
- 5. Press <DISPLAY> Button, and Numeric Disp Items.
- 6. Press Function "Soft Key." Select Display Item F1 to display the results for Function 1 Expression. F2 for Function 2 Expression, and so on.
- 7. Three applications are displayed:
 - **F1:** This is an expression for **% Voltage Regulation**. This measures the RMS Voltage on Element 1, and makes calculations based on 120V Nominal Line. Applications include **Power Supplies, Generators, and UPS Systems.**
 - F2: This is an expression for Power Loss. This measures the Single Phase Input Power on Element 1 and the Output Power on Element 2. Applications include Lighting Ballast's, Power Supplies, and Motor Inverters. A variation of this expression can be made for Single Phase Input – Three Phase Output, and Three-Phase Input – Three-Phase Output.
 - **F3:** This is an expression for **% Frequency Regulation**. This measures the Frequency of the Voltage on Element 1, and makes calculations based on 60 Hz Nominal Line frequency. This could be applied to 400 Hz systems, or any other reference frequency. Applications include **Generators, UPS Systems**.
 - **F4:** This is an expression for **Volts per Hertz**. This is an application for **Variable Speed Motor Drives**. It measures the **MEAN** or **Fundamental** Voltage of a PWM Drive divided by the drive frequency. The result can be displayed as a Numeric Value or displayed as a **Trend** function.

G.) TREND FUNCTIONS

TREND DISPLAY OVERVIEW

Trend Display is a new feature to the WT1600 Power Analyzer. Trend times can be set from 25 Seconds to 10 Days.

In the above example **T1** is RMS Voltage Trend; **T2** is RMS Current Trend; **T3** is Power Trend; and **T4** is Watt-Hour Trend.

	Rate: 200msec	Yoxogawa 🔶	
		Trend	
T 1 140.0 V	Trend Display		Trend Display sets Number of
	◎ A11 ON ◎ A11 OFF	Trend Display	Trend Items. Up to 16 Items can
	🖲 T 1 💽 T 2	Trend Format	be trended.
T 1 100.0 V T 2 1.000 A	🗑 T 3 💽 <mark>T 4</mark>	Quad	Trend Format can be set from a
	© T 5 ⊙ T 6	⊙ Trend T⁄div	Single Trend Graph to a Quad
•	© T 7 ⊙ T 8	2.5s∕dí∨	Graph.
T 2 0.0 A	OT9 OT10	Bestart	Time/Div can be set from 2.5s/div
T 3 50.00 W	o T11 o T12	Trend Exec	to Iday/div.
4	o T13 o T14	•	
	O T15 O T16		
T 3 20.00 W			
	·····	Trend Disp Items	Selects measurement items to be
			trended.
	00:00:25	Vertical Scale	Sote Venticel Seeling Can be get
Debug Counter 21875	2001/04/02 19:29:2	osuic	Sets vertical Scaling. Can be set
			to Auto or Manual Scaling.

TREND DISPLAY SETUP

- 1. Press <DISPLAY> Button. Press Format "Soft Key" and select Trend.
- 2. Press Trend Setting "Soft Key."
- 3. Press Trend Display "Soft Key." Use the Rotary Knob to highlight All OFF, and Press <SELECT>. Turn Rotary Knob to highlight T1, Press <SELSCT>. Repeat the process to turn on items T2, T3 and T4. Press <ESC> Button to exit menu.
- 4. Press Trend Format and select Quad with the "Soft Key."
- 5. Set Trend T/div using the Rotary Knob.
- 6. Press Trend Disp Item "Soft Key."
- Set Trend Object to T1 by using the Rotary Knob. Set Function to Urms, and Element 1. You can set the Function to any item you want.
- 8. Set Function for each of the other Trend Objects, T2, T3 and T4. Press <ESC> Button to exit menu and return to Trend menu.
- 9. Press Restart Trend Exec "Soft Key" to start Trending.
- 10. At the end of the Trend Cycle (example 25 sec) Press <HOLD> Button to Stop trending.
- 11. Press Scale "Soft Key" to adjust scaling for best resolution.
- 12. Press Trend Object "Soft Key" and select T1 using the Rotary Knob.
- 13. Press Scaling "Soft Key" and set to Manual.
- 14. Press Upper Scale "Soft Key" and use the Rotary Knob to set Upper Scale. Set Lower Scale in the same way. Set scaling for each Trend Object, T2, T3 and T4. Press <ESC> Button to exit menu and return to Trend menu.
- **15.** For the above example, **Manual** Scaling was set for **Trend Items T1, T2** and **T3**. **Auto** Scaling was set for **Trend Item T4**.
- 16. You can change the **DISPLAY Format** while the Trend is on **HOLD**.

H.) SAVING DATA

SAVING DATA TO MEMORY – MANUAL METHOD

PLL Src: U1	YOKOGAWA 🔶
	Store Setting
	◀ Mode
Urms1 118.00 V	Manua 1
List Item	🕑 Count
⊙ All ON ⊙ All OFF ⊙ Preset 1 ⊙ Preset 2 Element . Element 1⊙ Element 2⊙ Element 3	10
ΘΣΑ ΘΣΒ ΘΣC	Interva1
Function 🗑 Urms 🔘 Umean 🔘 Udc 🔘 Uac	Setting
💽 Irms 💿 Imean 💿 Idc 💿 Iac	
🙍 Ρ _ O _ S _ O _ Q _ 🐼 λ	
() ¢ () FreqU () FreqU	
O U+PEAK O U-PEAK O I+PEAK O I-PEAK	
	✓ Store Item
0 Xp 0 Pc	
_ I−Time _ Wp _ Wp+ _ Wp-	Numeric
Q q+Q q−	
0 1/10 1/11 0 11 0 12 0 13 0 14	LIST ITEM
O FI O F2 O F3 O F4	
O AIrms O AImean O Alde O Alae	
Boburg Counton 2042 2001 (04 (02 12:12)	
2001/04/03 13:13:0	

- STORE to start.Storage stops automatically when
- Count Number is reached.
 Set the Interval Setting H:M:S.
- With Interval Setting at 00:00:00, the interval will be at the Update Rate of the WT1600. Maximum Update Rate is 20 Readings Per Second.

- 1. Press <SHIFT> then <STORE SET>.
- 2. Press Mode "Soft Key" and select Store. Press Store to "Soft Key" and select Memory. Press Initialize Memory Exec "Soft Key" to clear memory.
- 3. Press Store Setting "Soft Key."
- 4. Press Mode "Soft Key" and select Manual with the "Soft Keys." Turn the Rotary Knob to set the Memory Count.
- 5. Press Store Item "Soft Key" and select type of items to be saved with "Soft Keys."
- 6. Press List Item "Soft Key." This menu sets the Numeric Items, which you want to Save. Turn the Rotary Knob to highlight an Item, and Press <SELECT>.
- If you selected a Wave or Numeric+Wave Store Item, Press the Wave Trace "Soft Key" and select the waveforms to be saved using the Rotary Knob. Highlight the waveform symbol and Press <SELECT>.
- 8. Press <STORE> Button to start saving. Store: Stop will appear in the Upper Left-hand corner of the screen when the store function is complete.
- 9. To view saved data, Press <SHIFT> then <STORE SET>. Press Mode "Soft Key" and select Recall.
- 10. Turn the Rotary Knob to view the saved data files.

SAVING HARMONIC DATA TO A FILE

							PL	L Src:	U1	YOKOGA	WA 🔶	
									_ •	Fi	1e	
			ххххх Пr		1ST H	***** 16[1/1	xxxxx กะ	1 1 L1 1161	тарана 12 хххх) 12 тара		e Item	Selects File Item to Save: Setup;
PLL	111		01.	118.32			01.	0.4808		Num	eric	Wave or Numeric
Freq	59.98	8 Hz	dC	-0.02		-0.01	dC	-0.0003	-0.05			
			1	118.21	•	99.86	1	0.3486	72.51	Data	Туре	Sata Data Tama
U1	118.3	7 V	2	0.05		0.04	2	0.0063	1.32			Sets Data Type
I1	0.480	8 A 2 U	3	4.08		3.44	3	0.2721	56.59	ASCII	Float	
PI	79.1	ζ₩	4	0.07 List	Iter	9.90 1	4	0.0052	1.09	4 Lis	t Item	
		_			1.001	<u></u>			- 1		C ICCH	Sets the Measurement Items to be
												Saved to the File
E10	ement		lement	10 E1	ement	t 20 I	Elemen	t 3				Saveu to the File
Fu	nction		П	ര	T	ര	р	6	s			
		õ	Q	Ä	λ	ă	ø	ă	φU			
		ō	φI	Ō	Z	ō	Rs	ō	Xs	•		Save Menu for Setting File Name
		0	Rp	0	Хp	0:	Σ List			Sa	ve	and Save Execute function
												and Save Execute function.
hCf1			17	0.23		0.20	17	0.0156	3.25			
F1			18	0.01		0.01	18	0.0008	0.17			
F2			19	0.09		0.08	19	0.0103	2.13			
F3			20	0.01		0.01	20	0.0010	0.20			
F4			21	0.14		0.12	21	0.0087	1.81	1	1 / 4	
φ01-ι	02		22	0.02		0.02	22	0.0014	0.30	Uti	IIty	
Debug	Counter	4702					20	01/04/04	15:26:14	ł		

- **1.** Setup WT1600 in the Harmonics Mode.
- 2. Insert a Floppy Disk in the disk drive.
- 3. Press <SHIFT> then <STORE SET>.
- 4. Press Mode "Soft Key" and select Store. Press Store to "Soft Key" and select File.
- 5. Press <FILE> Button. Press File Item "Soft Key" and select Numeric.
- 6. Press Data Type and select ASCII. This will save the data in a .csv file, which will go directly into Excel.
- Press List Item "Soft Key." Turn the Rotary Knob to highlight the Element you want to save data from. Press <SELECT>. Now turn the Rotary Knob to highlight the Function to be saved, such as U. Press <SELECT>. Select additional functions to be saved as desired. Press <ESC> to clear this menu.
- 8. Press Save "Soft Key." Press File Name "Soft Key" and enter the file name.
- **9. Press File List** "Soft Key." Turn the **Rotary Knob** to select the save destination medium. **Press <ESC>** to clear this menu.
- **10.** Storage media File Names:
 - [FD0]: Floppy Disk
 - [SC4]: Built-in Hard Disk
 - [ND0]: Network Drive
 - Select Floppy Disk for this demo.
- 11. Press Save Exec "Soft Key" to start saving the data to the Floppy Disk.

SAMPLE EXCH	<mark>EL DATA FI</mark>	LE				
Model	WT1600			7	0.0748	15.5610
Comment				8	0.0027	0.5594
Version	0.0100			9	0.0565	11.7454
Date	36985.0000			10	0.0021	0.4442
Time	0.6725			11	0.0396	8.2314
Mode	Harmonics			12	0.0012	0.2502
Wiring	1P2W-			13	0.0242	5.0400
5	1P2W-1P2W					
PLL Source	U1			14	0.0015	0.3030
Harmonics	Sigma A			15	0.0209	4.3459
Object	Ū					
Order	0 To 50			16	0.0012	0.2485
THD Formula	Total			17	0.0156	3.2462
Harmonics	16.0000			18	0.0008	0.1732
Window Width						
Average	Off			19	0.0103	2.1334
Frequency Item	U1	11	U2	20	0.0010	0.2003
. F1	U(E1,OR1)	Unit	V	21	0.0087	1.8075
F2	I(E1,OR1)	Unit	А	22	0.0014	0.2956
F3	P(E1,OR1)	Unit	W	23	0.0068	1.4045
F4	. Off			24	0.0013	0.2654
S Formula	Urms X Irms			25	0.0049	1.0209
Phase Angle	180 degree			26	0.0010	0.2017
Max Hold	ŬOff			27	0.0050	1.0307
Null	Off			28	0.0007	0.1380
Element	Element1	Element2	Element3	29	0.0042	0.8715
Module				30	0.0009	0.1774
Voltage Range	150V	150V	150V	31	0.0033	0.6772
Terminal	5A	5A	5A	32	0.0008	0.1660
Current Range	100mA	100mA	100mA	33	0.0035	0.7281
Sensor Ratio	10.0000	10.0000	10.0000	34	0.0006	0.1260
Line Filter	OFF	OFF	OFF	35	0.0028	0.5910
Zero Cross Filter	500Hz	OFF	500Hz	36	0.0007	0.1486
Scaling	Off	Off	Off	37	0.0030	0.6312
Pt Ratio	1.0000	1.0000	1.0000	38	0.0005	0.1027
Ct Ratio	1.0000	1.0000	1.0000	39	0.0024	0.4931
Scaling Factor	1.0000	1.0000	1.0000	40	0.0006	0.1325
-				41	0.0018	0.3776
Order	I[E1]	Ihdf[E1]		42	0.0003	0.0612
TOTAL	0.4808	nan		43	0.0018	0.3774
DC	-0.0003	-0.0528		44	0.0011	0.2237
1	0.3486	72.5086		45	0.0019	0.4019
2	0.0063	1.3163		46	0.0003	0.0726
3	0.2721	56.5911		47	0.0022	0.4530
4	0.0052	1.0917		48	0.0010	0.2073
5	0.1534	31.9013		49	0.0008	0.1750
6	0.0013	0.2785		50	0.0005	0.1101

DATA LOGGING FUNCTION

REAL TIME CONTROL

Set the START Date YEAR:MONTH:DAY and Start Time HOUR:MIN:SEC and the END Date and Time

Set the Interval Setting HOUR:MIN:SEC.

With Interval Setting at 00:00:00, the interval will be at the Update Rate of the WT1600. The Maximum rate is 20 Readings Per Second.

- 1. Press <SHIFT> then <STORE SET>.
- 2. Press Mode "Soft Key" and select Store. Press Store to "Soft Key" and select File. Press Initialize Memory Exec "Soft Key" to clear memory.
- 3. Press Store Setting "Soft Key."
- **4. Press Mode** "Soft Key" and select **Real Time** with the "Soft Keys." Set the Memory **Count** equal to or greater than Interval times Time. C = I x T
- 5. Press Interval Setting "Soft Key." Set Interval time in HOUR:MIN:SEC.
- 6. Press Real Time Control. Turn Rotary Knob to highlight Store Start Year. Press <SELECT>. Use Rotary Knob to set Year. Press <SELECT> to end. Set the Store Start date as Year:Month:Day, and Time as Hour:Min:Sec. Set the Store Stop in the same manor. Press <ESC> to clear menu.
- 7. Press Store Item "Soft Key" and select Numeric as the type of items to be saved.
- **8. Press List Item** "Soft Key." This menu sets the Numeric Items, which you want to Save. Turn the **Rotary Knob** to highlight an Item, and **Press SELECT>.**
- 9. Press <ESC> again to return to Store Set Menu. Press File Setting "Soft Key."
- **10.Press File List** "Soft Key," highlight [**FD0**], and **Press <SELECT>**. This sets the Save Destination to the Floppy Disk. **Press <ESC>** to clear the menu.
- **11.Press File Name** "Soft Key" and enter a File Name.
- 12.Press Data Type "Soft Key" and select ASCII by pressing the "Soft Key."
- **13.**Install a Floppy Disk. **Press <STORE>** Button. Storage will start at the preset Date and Time, and stop automatically at the preset end Date and Time. Data will then be transferred to the

Yokogawa 🔶

WT1600 Product Tutorial

I.) MOTOR FUNCTION SETUP

	Inver:		U1: I1:	1500	YUKUGAWA	•
		Mot	or Set		₩ U1	150V
υ		Speed	Torque	Pm	₩I1 Integ:Re	1A eset
T	Range	5V	100			150V
	Sense Type	Analog Pul	S6		Integ:Re	eset
P	Filter	OFF	J			150V
	Sca 1 ing	1.0000	150.0000	1.0000	Integ:Re	eset
^ ₁	Unit	RPM	FT-LB	<u></u>	₩ U4	150V
· ا	Pulse N	60	J		Integ:Re	eset
	Pole	22	J			150V
S s	Sync Speed	🖸 I1	J		Integ:Re	eset
C s	Sync	I1	J		₩ 06	150V
	JULITE				Integ:Re	eset
fŪ	1	60.	.006 Hz			
nt 11676 T (Cnt 9091		2001/0	4/13 00:18:26		

A. SPEED SETUP

- 1. Press <SHIFT> <MOTOR SET> Buttons.
- 2. Turn Rotary Knob to highlight Speed Sense Type, either Analog or Pulse
- 3. SETUP for ANALOG SPEED SENSOR:
 - a. Highlight Analog and Press <SELECT>.
 - **b.** Turn **Rotary Knob** to highlight **Speed Range, Press <SELECT>.** Turn **Rotary Knob** to highlight desired Voltage Range of the tachometer and **Press <SELECT>.**
 - c. Turn Rotary Knob to highlight Speed Scaling, Press <SELECT>. Use the Rotary Knob to set the Numeric Scale factor. As an example, a Tachometer might have an output of 20 Volts at 4000 RPM. Set Scaling to 4000.0000, Press <SELECT>.
- 4. SETUP for PULSE SPEED SENSOR:
 - a. Highlight **Pulse** and **Press <SELECT>**. Set **Scaling** value to **1.0000**
 - **b.** Turn **Rotary Knob** to highlight **Pulse N** and **Press <SELECT>.** Set the **Pulse Per Revolution** to match the Speed Sensor. Typical values are 60 and 1024.
 - **c.** Turn **Rotary Knob** to highlight **Pole**, and **Press <SELECT>**. Set the value to match the number of poles of the motor being tested.
 - **d.** Set **Sync Speed** and **Sync Source.** These are typically one of the current channels, and would be **I1** or **I4**, depending on connection to the WT1600.
- 5. SETUP for TORQUE SENSOR:
 - a. Turn Rotary Knob to highlight Torque Range, Press <SELECT>. Turn Rotary Knob to highlight desired Voltage Range of Torque Sensor and Press <SELECT>
 - b. Turn Rotary Knob to highlight Torque Scaling, Press <SELECT>. Use the Rotary Knob to set the Numeric Scale factor. As an example, a Torque meter might have an output of 10 Volts at 150 Ft-Lb. Set Scaling to 150.0000, Press <SELECT>
 - **c.** Turn **Rotary Knob** to highlight **Torque Unit, Press <SELECT>.** Use keyboard to enter the Torque Unit.
 - d. Pm, Mechanical Power, Scaling is typically left at 1.0, with Units as Watts.