PRECISION MEASURING INSTRUMENTS

YOKOGAWA

YOKOGAWA

Bulletin 2700-E
<table>
<thead>
<tr>
<th>Classification</th>
<th>Model Number</th>
<th>Measuring Range (Accuracy)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galvanometer</td>
<td>2707</td>
<td>0.1 1 10 100μV</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2708</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheatstone bridge</td>
<td>2768</td>
<td>(±0.01 to ±0.05%)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2755</td>
<td>(±0.1 to ±0.6%)</td>
<td>5</td>
</tr>
<tr>
<td>Double bridge</td>
<td>2752</td>
<td>(±0.3%)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2769</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Standard resistor</td>
<td>2792A</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Variable resistor</td>
<td>279301</td>
<td>(±0.01%)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>279303</td>
<td>(±0.05%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>278610</td>
<td>(±0.05 to ±2%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>278620</td>
<td>(±0.05 to ±0.5%)</td>
<td></td>
</tr>
</tbody>
</table>
2707
Electronic Galvanometer

Model 2707 is a compact transistorized electronic galvanometer using a battery. With sensitivity of 10μV/div., this instrument is highly suited to field measurements and as an indicator for complex measuring instruments.

- 10μV/div. sensitivity
- Stable measurement
 - Zero drift is as low as 1μV/h or 1μV/20°C
- Overload protection circuit
- 300 hours battery life

Measuring Range: ±250 μV ±20%
Maximum Sensitivity: 10 μV/div. ±10%
Input Resistance: Approx. 9 kΩ
Response Time: Approx. 3 seconds
Common Mode Rejection: More than 140 dB at DC and commercial frequency (50 and 60 Hz).
Normal Mode Rejection: More than 60 dB.
Vibration of Pointer: Unrecognizable.
Drift: Less than 1 μV/10 minutes or 2 μV/20°C.
Max. Allowable Input: 5 V.
Life of Battery: Approx. 300 hours when continuously used.
Power Source: One 9 V battery (JIS 6F22 or equivalent).

2708
Galvanometer

Model 2708 Galvanometer is a compact pointer type with a quick response (2 seconds). It employs a shock- and vibration-proof taut-band suspension system. This unit is also suitable for classroom applications.

- 0.9μA/div., 270μV/div. sensitivity
- Quick response – 2 seconds
- Shock- and vibration-proof taut band suspension system
- Compact and lightweight (0.4 kg)
- Can be tilted to any desired angle with accessory stand

Current Sensitivity: 0.9μA/div. ±10%
Voltage Sensitivity: 270μV/div. ±15%
Response Time: Approx. 2 seconds
External Critical Resistance: 200Ω.
Model 2768 is a precision bridge used for exact determination of resistance in the 100 mΩ to 110 MΩ range with accuracy of 0.01 to 0.05%. Since this instrument includes a high-sensitivity transistorized galvanometer and bridge power source, no auxiliary device is required.

- Superior resistor element
- Minimized contact resistance
- Guarding and shielding
 Materials of high insulation resistance and low absorption are employed. Guard circuits are provided to insure stable operation even in highly humid atmospheres. The instrument is housed in a (grey) metal case to assure the operator of excellent shielding.
- Heat-insulated pushbutton keys
 If the operator’s body temperature were carried to the galvanometer sensitivity control keys, a temperature difference would arise at the contact point and produce thermal emf resulting in measurement error. To eliminate this effect, the pushbutton keys for the galvanometer sensitivity control are heat-insulated with phenol resin.

SPECIFICATIONS

Measuring Range:

<table>
<thead>
<tr>
<th>Range</th>
<th>Measuring Range</th>
<th>Min. Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 100 mΩ</td>
<td>0.10000 to 1.11110 Ω</td>
<td>10 μΩ</td>
</tr>
<tr>
<td>x 1 Ω</td>
<td>1.0000 to 11.11110 Ω</td>
<td>0.1 mΩ</td>
</tr>
<tr>
<td>x 10 Ω</td>
<td>10.000 to 111.1110 Ω</td>
<td>1 mΩ</td>
</tr>
<tr>
<td>x 100 Ω</td>
<td>100.00 to 1111.10 Ω</td>
<td>10 mΩ</td>
</tr>
<tr>
<td>x 1 kΩ</td>
<td>1.0000 to 1111.10 kΩ</td>
<td>0.1 kΩ</td>
</tr>
<tr>
<td>x 10 kΩ</td>
<td>10.000 to 1111.10 kΩ</td>
<td>1 kΩ</td>
</tr>
<tr>
<td>x 100 kΩ</td>
<td>100.00 to 11111.10 kΩ</td>
<td>10 kΩ</td>
</tr>
<tr>
<td>x 1 MΩ</td>
<td>1.0000 to 111111 MΩ</td>
<td>100 Ω</td>
</tr>
<tr>
<td>x 10 MΩ</td>
<td>10.000 to 1111111 MΩ</td>
<td>1 kΩ</td>
</tr>
</tbody>
</table>

Measuring Arm: 0 to 11, 111Ω adjustable in 0.1Ω steps, (consists of five decades: 1,000Ω x 10 + 100Ω x 10 + 10Ω x 10 + 1Ω x 10 + 0.1Ω x 10).

Multiplier: x 100mΩ, x 1Ω, x 10Ω, x 100Ω, x 1kΩ, x 10kΩ, x 100kΩ, x 1MΩ and x 10MΩ.

Accuracy: (At 23 ±2°C, less than 75%)
- x 100mΩ range . . ±0.5mΩ, x 1Ω range . . ±(0.02% of setting + 0.5mΩ), x 10Ω, x 100kΩ & x 1MΩ ranges . . ±0.02% of setting, x 100Ω, x 1kΩ & x 10kΩ ranges . . ±0.01% of setting, x 10MΩ range . . ±0.05% of setting.

Maximum Allowable Input: 0.2W continuously for ratio arm, 0.2 W continuously per element for measuring arms.

Galvanometer (built-in): Max. sensitivity . . approx. 10μV/div. (provided with a sensitivity adjuster), power source . . single 9V battery (JIS 6F22 or equivalent), battery life . . approx. 300 hours.

Insulation Resistance: More than 1,000MΩ at 250V DC at ambient humidity of less than 75% between electric circuit and case.

Dielectric Strength: 500V AC for one minute between electric circuit and case.

Case: Grey metal case, with plastic feet and carrying handles.

Bridge Power Source (built-in): Power source range . . 1.5/3/6/15 V selectable, power source battery . . four 1.5V batteries (JIS R20P, ANSI D, Mono 1.5V or equivalent) and single 9V battery (JIS 6F22, ANSI 6F22, Energieblock 9V or equivalent).
Model 2755 measures resistances from 1Ω to 10 MΩ by operation of dials and switches. Batteries and a galvanometer are self-contained. The front control panel is provided with power and galvanometer circuit selectors, one ratio arm dial, and four measuring arm dials.

Model 2755 is also equipped with a Murray and Varley Loop Tester for convenient location of line faults such as “shorts” and “grounds” in power, telephone, telegraph, and signal cables.

- No auxiliary attachment required
- Galvanometer with a built-in protection circuit
- Compact, lightweight (2 kg)
- Built-in Murray & Varley loop tester

SPECIFICATIONS

| Measuring Range: 1,000 Ω to 10,000 MΩ. |
| Measuring Arms: 1 Ω x 10 + 10 Ω x 10 + 100 Ω x 10 + 1,000 Ω x 10 (min, one step: 1 Ω). |
| Ratio Arms (Multiplier): x 0.001, x 0.01, x 0.1, x 1, x 10, x 100, x 1,000, M10, M100, M1000... Murray & Varley loop testing. |
| Accuracy: ±0.1% of reading on 100 Ω to 100 kΩ range, ±0.3% of reading on 10 Ω to 1 MΩ range, ±0.6% of reading on 1 Ω to 10 MΩ range. |
| Temperature Coefficient of Resistance Elements: ±5 x 10⁻⁵ °C/°C at ambient temperature of 5 to 35°C (41 to 95°F), ±2 x 10⁻⁵ °C/°C at ambient temperature 20 to 35°C (68 to 95°F). |
| Galvanometer: Sensitivity... 0.9 μA/div., internal resistance... Approx. 150 Ω, external critical damping resistance... Approx. 800 Ω, period... within 1.5 seconds. |
| Power Source: Three 1.5 V batteries (built-in). |
| Operating Temperature Range: 5 to 35°C (41 to 95°F). |
| Humidity Range: 85% max., relative humidity. |
| Outer Case: ABS resin. |
| Accessory supplied at no extra cost: Carrying case. |

Model 2769 is a compact, portable Kelvin double bridge designed for measuring low resistance from 0.1 mΩ to 110 Ω with four multiplication plugs and one measuring dial. It has built-in standard resistors, bridge power source and high-sensitivity taut-band suspension system electronic DC galvanometer.

SPECIFICATIONS

| Measuring Range: 0.1 mΩ* to 110 Ω. |
| Measuring Dial: 1.00 to 11.00 Ω at x 1. |
| Multipliers: x 0.0001*, x 0.001, x 0.01, x 0.1, x 1, x 10 (plug-in system). |
| Min. Division: 0.005 mΩ at x 0.0001*, 0.05 mΩ at x 0.001, 0.5 mΩ at x 0.01, 5 mΩ at x 0.1, 50 mΩ at x 1, 0.5 Ω at x 10. |
| Accuracy: ±(0.05 mΩ x multiplier + 0.01 mΩ) at temperature range of 5 to 35°C and humidity range of less than 85%. |
| Current Rating: 10A at x 0.0001*(0.01Ω), 3A at x 0.001 (0.1Ω), 1A at x 0.01 (1Ω), 0.3A at x 0.1 (10Ω), 0.1A at x 1 (100Ω), 0.01A at x 10 (1,000Ω). |
| Galvanometer: Built-in electronic DC galvanometer, voltage sensitivity... approx. 20 μV/div. sensitivity changeover. |
| G₉... (input resistance: approx. 11 kΩ). |
| G₁... approx. 1/11 of G₉ sensitivity. |
| G₂... approx. 1/110 of G₉ sensitivity, power source; one 9 V battery (JIS 6F22), battery life; approx. 300 hours. |
| Operating Temperature Range: 5 to 35°C (41 to 95°F). |
| Humidity Range: Less than 85% relative humidity. |
| Bridge Power Source: Tow 1.5 V batteries (JIS R20P). |
| External power source is also usable. Terminals for an external battery are provided. |

*Note: Standard Resistor (Model 2771) is required for measurement on 0.1 to 1.1 mΩ range at 0.0001 multiplier.

Accessory supplied at no extra cost: Carrying case.
| Optional Accessories: 2771 standard resistor, 2753 measuring cords, 2754 clamp device. |
2752
Precision Double Bridge

Model 2752 is a precision laboratory standard Kelvin bridge for measuring resistance below 100Ω to an accuracy of ±0.03 to ±0.05%. This instrument is used not only for high-precision measurement of resistance but also for measurement of electrical conductivity of conductors and calibration of low resistance instruments. It is also designed for testing large-capacity shunts and measuring lead resistance per unit length of bar or wire conductors in combination with accessory.

- Laboratory-grade accuracy – ±0.03 to ±0.05%
- Quick readout without error
- Excellent long-term stability
- The resistance elements are made of selected manganin wire, stabilized by both artificial and natural aging after being wound.
- Perfect guard system
- Stable measurement
- The dial switches offer low contact resistance and little change due to aging, giving stable operation. Inner/outer contact type plugs are used for changing the multiplication factor, assuring little change in the resistance due to reinsertion of plugs.
- Built-in standard resistors
- Bar resistor measurement

SPECIFICATIONS

Measuring Range: 0.1000mΩ to 111.10Ω in five digits.
Measuring Arm: (at Multiplier x 1): 100mΩ x 10 + 10mΩ x 10 + 1mΩ x 10 + (0.05 to 1.05mΩ).
Minimum Division: 0.0001mΩ at x 0.001, 0.001mΩ at x 0.01, 0.01mΩ at x 0.1, 0.1mΩ at x 1, 1mΩ at x 10 and 1mΩ at x 100.
Multiplier: x 0.001, x 0.01, x 0.1, x 1, x 10 and x 100.
Accuracy: At resistance of potential leads and current leads less than 10mΩ/wire; ±(0.03% of reading + 1μΩ) at 23±2.5°C, ±(0.05% of reading + 1μΩ) at 10 to 40°C.
Current Rating: 30A at x 0.001, 10A at x 0.01, 3A at x 0.1, 0.5A at x 1, 0.15A at x 10, 0.05A at x 100.
Case: Grey metal case, with plastic feet and carrying handles.

Insulation Resistance: More than 100MΩ at 500V DC between the electric circuit and case.
Dielectric Strength: 500V AC for one minute between electric circuit and case.
Optional Accessories: 2707 electronic galvanometer (rear cover), 2012 DC volt-ammeter, slide resistor, 2753 measuring cords, 2754 clamp device.

OPTIONAL ACCESSORIES FOR 2752 & 2769

2753 MEASURING CORDS

2753 is a set of cords, and used for connecting the resistor to be measured.

- **Current Cords:** One pair, 2m each, approx. 3mΩ.
- **Voltage Cords:** One pair, 2m each, approx. 8mΩ.
- **Clamp Fixture:** Attached to the end of each cord.
- **Weight:** Approx. 4.1 kg (9.0 lbs).

2754 CLAMP DEVICE

2754 is used for resistance measurement of bar or wire conductor. 2754 enables easy measurement of resistance per unit length.

- **Distance between Voltage Terminals:** 500mm (19-3/4").
- **Current Cords:** One pair, 500mm each, approx. 1mΩ.
- **Voltage Cords:** One pair, 500mm each, approx. 2.5mΩ.
2792A Series
Standard Resistors

- Accuracy 40% higher than our previous models!
 Temperature coefficient down 2/3!

Main Features
- Traced to the national standard for high accuracy; test (calibrated) accuracy of ±5 ppm
- Resistance temperature coefficient
 Excellent temperature characteristics in the range of 0 -50ºC; resistance temperature coefficient less than ±2.5 ppm/ºC
- A variety of models
 Eight models with nominal resistance values ranging between 0.001 Ω and 10 kΩ
- Precision temperature control equipment, such as an oil bath, not needed for calibration due to marked improvement in resistance temperature coefficient
- Included document: Test certificate

The 2972A Series of standard resistors are metal foil resistors, while the previous 2972 Series were winding resistors. The error range of the 2972A Series is much smaller than those of the previous 2972 Series, as demonstrated by the resistance temperature coefficient curves (Graph 1). Precision temperature control equipment such as oil baths, are not needed for measurement and calibration. The 2972A can do these in an air environment.

At development sites, the 2972A serves many purposes, ranging from precision measurement to calibration of equipment. The main body of the 2972A employs the same plastic case as that of the previous series, and the 2972A has a damage-resistant and easy-to-connect terminal block. The 2972A can be even more effective in precision measurement when it is combined with our potentiometer and double bridge.

Graph 1 Error characteristics of the 2972 and 2972A Series with respect to temperature

\[
R_t = R_{20} (1 + a (t-20) + b (t-20)^2)
\]

- 2972 \(a = -5 \) to +10 \(\beta = \text{Less than} -0.7 \)
- 2972A \(a = \pm 2.5 \) \(\beta = \text{Less than} -0.1 \)
Operating temperature and humidity ranges: 0-50°C / 20-80% RH
Storage temperature and humidity ranges: -20-60°C / 20-80% RH
Maximum allowable power: 3 W
Test (calibrated) accuracy: ±5 ppm
Power characteristics: ±100 ppm/W
Insulation resistance: More than 1000 MΩ at 500 V DC
Withstand voltage: 1.5 kV for one minute between measurement terminal and casing
Terminal construction: 4 terminals
External dimensions: Approximately ø104 × 150 mm (current terminal width: approximately 174 mm)
Weight: Approximately 1.2 kg
Accessories: User’S Manual, One Test Certificate

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Nominal value</th>
<th>Accuracy 23°C±2°C</th>
<th>Temperature coefficient α23 (ppm/°C)</th>
<th>Temperature coefficient β (ppm/°C²)</th>
<th>Drift per year</th>
<th>Maximum allowable current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2792A01</td>
<td>0.001 Ω</td>
<td>±100 ppm</td>
<td>-5 to ±15</td>
<td>Less than -0.1</td>
<td>±100 ppm/year</td>
<td>54.7</td>
</tr>
<tr>
<td>2792A02</td>
<td>0.01 Ω</td>
<td>±75 ppm</td>
<td>±10</td>
<td>Less than -0.1</td>
<td>±75 ppm/year</td>
<td>17.3</td>
</tr>
<tr>
<td>2792A03</td>
<td>0.1 Ω</td>
<td>±50 ppm</td>
<td>±5</td>
<td>Less than -0.1</td>
<td>±50 ppm/year</td>
<td>5.47</td>
</tr>
<tr>
<td>2792A04</td>
<td>1 Ω</td>
<td>±30 ppm</td>
<td>±2.5</td>
<td>Less than -0.1</td>
<td>±30 ppm/year</td>
<td>1.73</td>
</tr>
<tr>
<td>2792A05</td>
<td>10 Ω</td>
<td>±30 ppm</td>
<td>±2.5</td>
<td>Less than -0.1</td>
<td>±30 ppm/year</td>
<td>0.547</td>
</tr>
<tr>
<td>2792A06</td>
<td>100 Ω</td>
<td>±30 ppm</td>
<td>±2.5</td>
<td>Less than -0.1</td>
<td>±30 ppm/year</td>
<td>0.173</td>
</tr>
<tr>
<td>2792A07</td>
<td>1 kΩ</td>
<td>±30 ppm</td>
<td>±2.5</td>
<td>Less than -0.1</td>
<td>±30 ppm/year</td>
<td>0.055</td>
</tr>
<tr>
<td>2792A08</td>
<td>10 kΩ</td>
<td>±30 ppm</td>
<td>±2.5</td>
<td>Less than -0.1</td>
<td>±30 ppm/year</td>
<td>0.017</td>
</tr>
</tbody>
</table>

Standard test conditions: DC current, temperature: 23 ±2°C, power: below 0.1 W (2792A01) and below 0.01 W (2792A02-2792A08)

OPERATING PRECAUTIONS

- **Temperature**
 To maintain a high level of measurement accuracy, the Standard Resistor must be used in rooms with a constant ambient temperature or placed in a thermostatic chamber. Measure the ambient temperature accurately and perform compensation according to the temperature coefficient. Ensure that the instrument is not subjected to rapid changes in temperature during storage as changes in resistance or deterioration of the insulator may result. (Instrument can be operated stably for over two hours.)

- **Temperature coefficients and resistance**
 The resistance at temperature t is expressed by the following equation:
 \[R_t = R_{23} (1 + \alpha_{23} (t - 23) + \beta (t - 23)^2) \]
 where
 - R_t: Resistance value at t°C
 - R_{23}: Resistance value at 23°C
 - α_{23}: 1st temperature coefficient at 23°C
 - β: 2nd temperature coefficient at 0 to 50°C

- **Current**
 When electric current flows through the Standard Resistor, its resistance value changes due to the generated heat. To ensure accurate measurement, use the Standard Resistor below the maximum allowable current, which is one of the standard test conditions. When the applied current exceeds the maximum allowable current, the resistance could change, or the internal circuit could be broken.

- **Thermal emf and Contact Resistance**
 To minimize the effects of thermal emf, connect the circuit with copper wire, and take the average of two readings obtained by reversing the direction of the current flowing through the current terminals. Incomplete contact between the lead wire and the terminals causes current change due to contact resistance, and temperature errors due to heat generation.

- **Mechanical Shock and Vibration**
 Mechanical shock and vibration may cause distortion of the resistive elements, which results in instability and changes in the resistance value.
2793
Decade Resistance Boxes

Model 2793 is a high-accuracy, stable DC variable resistor with 6 dials and is available in two styles: 279301 for medium resistance from 0.1 to 1,111,210Ω in 1mΩ steps (best suited for calibration of resistance thermometers or bridges); 279303 for high resistance from 0 to 111,1110 MΩ in 100Ω steps (suitable for calibration of insulation resistance testers or bridges).

279301
- High accuracy and stability
- High reproducibility
 Excellent reproducibility is obtainable because dial switches with low contact resistance are used. For example, changes in contact resistance is within ±1.1mΩ at 0.1Ω setting.
- 1mΩ resolution
- Simple, quick dial operation
- In-line display for easy reading
- Ideal for calibration of resistance thermometers and bridges
 Due to its high accuracy and a dial system, various types of resistance thermometers and bridges can be calibrated accurately and promptly.
- Excellent anti-shock and -vibration properties

279303
- Up to 100MΩ in 100Ω step
- Low voltage coefficient
 Variation of the resistance value is less than ±0.1% at 1Ω and 10MΩ steps against 100V application, and less than ±0.04% at 100Ω, 1kΩ, 10kΩ, and 100kΩ steps against 10V application.
- Shock- and vibration-proof construction
- Easy-to-read in-line indication
- Best suited for calibration of insulation resistance testers and bridges

SPECIFICATIONS

279301
Resistance Range: 0.1Ω to 1,111,210Ω (Minimum resistance is 0.1Ω).
Dial Composition: 0.001Ω x 10 + 0.01Ω x 10 + 0.1Ω x 11 + 1Ω x 10 + 10Ω x 10 + 100Ω x 10
Resolution: 0.001Ω
Accuracy: ±(0.01% + 2mΩ) at temperature 23 ±2°C, humidity 45 to 75%, and 0.1 W power application
Max. Allowable Input Power: 0.25 W/step. Within 1W for overall instrument.

Max. Allowable Input Current:
- 50 mA (100Ω steps), 150 mA (10Ω steps), 500 mA (1Ω steps), and 1.5 A (0.1Ω steps).

Insulation Resistance:
- More than 500 MΩ at 500 V DC between panel and circuit.

Dielectric Strength:
- 1,000 V AC for one minute between panel and circuit.

Temperature Coefficient:

<table>
<thead>
<tr>
<th>Temperature Coefficient</th>
<th>Dial</th>
<th>100Ω Step</th>
<th>10Ω Step</th>
<th>1Ω Step</th>
<th>0.1Ω Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>α<sub>20</sub> (x 10<sup>-6</sup>/°C)</td>
<td>-5 to +10</td>
<td>-5 to +20</td>
<td>Approx. 20 to 90</td>
<td>Approx. 90 to 900</td>
<td></td>
</tr>
<tr>
<td>β (x 10<sup>-6</sup>/°C<sup>2</sup>)</td>
<td>-0.3 to -0.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Variation of resistance with temperature change is given by the following equation:
\[R_t = R_{20} \left[1 + \alpha_{20} (t - 20) + \beta (t - 20)^2 \right] \]
where, R_t: Resistance value at t°C
R₂₀: Resistance value at 20°C

279303
Resistance Range: 0 to 111,1110 MΩ.
Dial Composition: 100 Ω x 10 + 1 kΩ x 10 + 10 kΩ x 10 + 100 kΩ x 10 + 1 MΩ x 10 + 10 MΩ x 10.
Accuracy: 100 Ω, 1 kΩ, 10 kΩ and 100 kΩ steps ±(0.05% + 0.05 Ω).

Max. Allowable Input:
- 100 Ω step 100 mA
- 1 kΩ step 30 mA
- 10 kΩ step 10 mA
- 100 kΩ step 3 mA (100 to 600 kΩ)
- 1 MΩ step 2000 V (700 kΩ to 1 MΩ)
- 10 MΩ step 2000 V

Temperature Coefficient:
- 100 Ω, 1 kΩ step \(\alpha_{20} = (-2 + 20) \times 10^{-6}/°C \)
- 10 kΩ, 100 kΩ, 1 MΩ, 10 MΩ step ±30 x 10⁻⁶/°C

Variation of resistance with temperature change is given by the following equation:
\[R_t = R_{20} \left[1 + \alpha_{20} (t - 20) + \beta (t - 20)^2 \right] \]
where, R_t: Resistance value at t°C
R₂₀: Resistance value at 20°C

Insulation Resistance:
- More than 10¹¹ Ω at 1,000 V DC between panel and circuit.

Dielectric Strength:
- 2,500 V AC for one minute between panel and circuit.
Decade Resistance Boxes

Models 278610 and 278620 six-dial decade resistance boxes allow quick and easy setting of a wide range of resistance. These resistance boxes are used in combination with voltage or current standards to adjust voltage or current, as dummy load resistances or as an arm of AC bridges.

Accuracy and Temperature Coefficient (2786):

<table>
<thead>
<tr>
<th>Step</th>
<th>Accuracy*1</th>
<th>Temperature Coefficient*2</th>
<th>Reference Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1Ω</td>
<td>±2</td>
<td>±250</td>
<td>1.7A</td>
</tr>
<tr>
<td>1Ω</td>
<td>±0.5</td>
<td>±100</td>
<td>170mA</td>
</tr>
<tr>
<td>10Ω</td>
<td>±0.1</td>
<td>±20</td>
<td>55mA</td>
</tr>
<tr>
<td>100Ω</td>
<td>±0.05</td>
<td>±10</td>
<td>71mA</td>
</tr>
<tr>
<td>1kΩ</td>
<td>±0.05</td>
<td>±10</td>
<td>17mA</td>
</tr>
<tr>
<td>10kΩ</td>
<td>±0.1</td>
<td>±50</td>
<td>7.1mA (10kΩ to 30kΩ)</td>
</tr>
<tr>
<td>100kΩ</td>
<td>±0.1</td>
<td>±50</td>
<td>250V (200kΩ to 1 MΩ)</td>
</tr>
</tbody>
</table>

Notes:

*1. At standard reference conditions of 23±3°C ambient temperature, 45 to 75% humidity and less than 0.1W application.

*2. The resistance value at t°C can be expressed by the following equation:

\[R_t = R_{23} \left(1 + \alpha_{23} \cdot (t - 23) + \beta \cdot (t - 23)^2 \right) \]

Where,

- \(R_{23} \): Resistance value at 23°C.
- \(\alpha_{23} \): Temperature coefficient at 23°C.
- \(\beta \): Temperature coefficient at 23°C.

*3. Within five minutes.