Precision Starts at the Source

GS200
DC Voltage/Current Source
The GS200 generates high accuracy, high stability, high resolution, and extremely low-noise DC voltage and current signals that are required for many applications. Additionally, the optional monitoring feature turns the GS200 into a voltage and current measuring instrument.

- Voltage source up to ±32 V and current source up to ±200 mA
- 5 1/2-digit, ±120000-count output resolution
- Voltage and current simple monitoring feature (optional)
- Programmable output up to 10000 points
- Built-in USB mass storage device
- Channel expansion through synchronous operation

Application Example

Components and materials
- Pressure sensors
- Temperature sensors
- Optical sensors
- Rechargeable battery control devices
- Power semiconductor devices
- Capacitors
- Resistors
- Small motors

IoT and vehicle equipment
- Smart appliances
- Wearable equipment
- Smart phone
- LED lighting
- Organic Els
- Optical interface modules
- Aircraft related equipment
- Future generation computing systems

Energy
- Rechargeable batteries
- Fuel cells
- Photovoltaics
- Maintenance and inspection
 - Nuclear and thermal power generation
 - Factories

The GS200 delivers:

Performance – The GS200’s outstanding performance delivers extremely low noise DC signals used in a wide range of design processes.

Versatility – The GS200 can act not only as a source but also as an constant - load. Its monitoring feature delivers data logging capability.

Usability – Individual up/down digit keys enable dynamic and fast change of output. The high resolution display provides a comprehensive view.
High Accuracy and High Resolution Output

Each DC voltage/current source in the GS200 series uses two DACs to generate highly accurate voltage and current at a high resolution. It is highly stable whether it is used for a short or long period of time and features superb linearity over all the ranges. Moreover, it produces extremely low noise.

High accuracy

- ±0.016% of setting + 240 μV (at 10 V range for one year)
- ±0.03% of setting + 5 μA (at 100 mA range for one year)

High stability

- ±0.001% of setting + 20 μV (at 10 V range for one day)
- ±0.004% of setting + 3 μA (at 100 mA range for one day)

High resolution

- 100 nV (VDC, 10 mV range), 10 nA (1 mA range)

Low noise

- 100 μVp-p (10 V range, DC to 10 kHz)
- 3 μAp-p (100 mA range, DC to 10 kHz)

The GS200 features 5 1/2-digit, ±120000-count output resolution for both voltage and current sources. At the 100 mV and 10 mV source ranges, the GS200 uses its highly accurate voltage divider to achieve extremely low noise levels, in the order of μV. The minimum output resolution of 100 nV and low noise output enable you to make extremely small changes to the signal level.

Source and Sink Operations

The GS200 can perform four-quadrant operation by operating as a current source or a current sink in the range of ±30 V and ±200 mA.

When the GS200 is sinking current, it can operate over the exact same range as when it is operating as a current source. You can use the GS200 not just as a highly accurate voltage source but also as a highly accurate constant-current electronic load.

Voltage ranges

- 10 mV, 100 mV, 1 V, 10 V, and 30 V

Maximum output current

- ±200 mA (at 1 V, 10 V, and 30 V ranges)
 (A highly accurate voltage divider is used at the 10 mV and 100 mV ranges.)

Current ranges

- 1 mA, 10 mA, 100 mA, and 200 mA

Maximum output voltage

- ±30 V
High stability, low noise characteristics

The GS200 is widely used in various fields such as state-of-the-art academic research and next-generation equipment development because it can provide highly stable, low noise and reliable power supply to devices that require accurate and stable operation.

Simple Voltage and Current Monitoring Feature (Optional)

In addition to the GS200's high accuracy voltage and current source features, it can also be equipped with an optional simple voltage and current monitoring feature. With this option, the GS200 can function as a current monitor when it is generating voltage and as a voltage monitor when it is generating current. The display resolution is 4 1/2 digits. The measured values can be stored along with the source values in the internal memory (USB mass storage device).

Easy to use

An up/down key has been provided below each of the 5 1/2 digits for setting the source so that any digit can be readily changed. Changing the source value is easy, and increment/decrement resolution can also be set freely. This feature is invaluable during threshold level detection of the DUT and during measurements of I-V characteristics. In addition, the GS200's high-resolution dot matrix VFD enables a large amount of information to be displayed. The GS200 also offers freely adjustable font sizes for improved readability and productivity. The GS200 has soft key menus for easy operation.
Easy Programming Using the Mass Storage Feature

You can define up to 10000 steps of output values and stored these steps to USB memory. You can also set the output interval, settling time, and other settings. If you connect the GS200 to a PC, the PC will detect the GS200 internal memory as an external storage medium (USB mass storage device). You can easily drag data from the PC to the GS200 internal memory. In addition, you can enter and edit output data using the GS200 keys. On models with the monitoring option, the measured data is stored to the internal memory along with the output data. You can easily drag the measured data from the GS200 to the PC. You can use the GS200 as a simple I-V curve tracer or data logger.

Channel Expansion through Synchronous Operation

By using multiple GS200s in synchronous operation, you can expand the number of channels that are available. It is easy to apply voltages and monitor currents simultaneously on multiple pins. There is no need for synchronous control circuits or complicated wiring. The source and monitored values are saved in CSV format to the internal memory (USB mass storage device) of each GS200. By collecting and merging these files, you can view a list of the relationships between the voltages and currents of multiple channels.

Rear Panel

1. I/O terminals for synchronous operation
2. USB port
3. Ethernet port (option)
4. BNC I/O terminals
5. GP-IB
 Yokogawa 7651 model compatible mode is equipped.
6. Output terminals (only on the GS211)
 On GS211 models, the I/O terminals are on the rear panel (no terminals are provided on the front panel). Choose front panel terminals or rear panel terminals depending on your situation.
Specifications

Voltage Source Section

<table>
<thead>
<tr>
<th>Range</th>
<th>Source Range</th>
<th>Resolution</th>
<th>24-Hour Stability ±(% of setting + μV)</th>
<th>90-Day Stability ±(% of setting + μV)</th>
<th>90-Day Accuracy ±(% of setting + μV)</th>
<th>1-Year Accuracy ±(% of setting + μV)</th>
<th>Temperature Coefficient ±(% of setting + μV)/ºC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mV</td>
<td>±12,000.00 V</td>
<td>100 nV</td>
<td>0.002 + 3</td>
<td>0.014 + 4</td>
<td>0.018 + 4</td>
<td>0.025 + 5</td>
<td>0.0018 + 0.7</td>
</tr>
<tr>
<td>100 mV</td>
<td>±120,000.00 V</td>
<td>1 μV</td>
<td>0.003 + 3</td>
<td>0.014 + 5</td>
<td>0.018 + 10</td>
<td>0.025 + 10</td>
<td>0.0018 + 0.7</td>
</tr>
<tr>
<td>1 V</td>
<td>±1,200,000 V</td>
<td>10 μV</td>
<td>0.001 + 10</td>
<td>0.008 + 50</td>
<td>0.010 + 100</td>
<td>0.016 + 120</td>
<td>0.0009 + 7</td>
</tr>
<tr>
<td>10 V</td>
<td>±12,000.00 V</td>
<td>100 μV</td>
<td>0.001 + 20</td>
<td>0.008 + 100</td>
<td>0.010 + 200</td>
<td>0.016 + 240</td>
<td>0.0008 + 10</td>
</tr>
<tr>
<td>30 V</td>
<td>±32,000.00 V</td>
<td>1 mV</td>
<td>0.001 + 50</td>
<td>0.008 + 200</td>
<td>0.010 + 500</td>
<td>0.016 + 600</td>
<td>0.0008 + 30</td>
</tr>
</tbody>
</table>

24-hour stability values are for 23°C ±1°C and power fluctuation within ±5%.
90-day stability and 90-day and 1-year accuracy values are for 23°C ±5°C.
Add the temperature coefficient for 90-day and 1-year accuracy values for 5°C to 18°C and for 28°C to 40°C.

<table>
<thead>
<tr>
<th>Range</th>
<th>Maximum Output Current</th>
<th>Output Resistance</th>
<th>Output Noise</th>
<th>CMRR (50/60 Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mV</td>
<td>—</td>
<td>App. 2 Ω</td>
<td>3 μVp-p</td>
<td>>120 dB</td>
</tr>
<tr>
<td>100 mV</td>
<td>—</td>
<td>App. 2 Ω</td>
<td>5 μVp-p</td>
<td>30 μVp-p</td>
</tr>
<tr>
<td>1 V</td>
<td>±200 mA</td>
<td>±2 mΩ</td>
<td>15 μVp-p</td>
<td>60 μVp-p</td>
</tr>
<tr>
<td>10 V</td>
<td>±200 mA</td>
<td>±2 mΩ</td>
<td>50 μVp-p</td>
<td>100 μVp-p</td>
</tr>
<tr>
<td>30 V</td>
<td>±200 mA</td>
<td>±2 mΩ</td>
<td>150 μVp-p</td>
<td>200 μVp-p</td>
</tr>
</tbody>
</table>

Current Source Section

<table>
<thead>
<tr>
<th>Range</th>
<th>Source Range</th>
<th>Resolution</th>
<th>24-Hour Stability ±(% of setting + μA)</th>
<th>90-Day Stability ±(% of setting + μA)</th>
<th>90-Day Accuracy ±(% of setting + μA)</th>
<th>1-Year Accuracy ±(% of setting + μA)</th>
<th>Temperature Coefficient ±(% of setting + μA)/ºC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mA</td>
<td>±1,20000.00 mA</td>
<td>10 mA</td>
<td>0.0015 + 0.03</td>
<td>0.016 + 0.1</td>
<td>0.02 + 0.5</td>
<td>0.03 + 0.1</td>
<td>0.0015 + 0.01</td>
</tr>
<tr>
<td>10 mA</td>
<td>±12,000.00 mA</td>
<td>100 mA</td>
<td>0.0015 + 0.3</td>
<td>0.016 + 1.5</td>
<td>0.02 + 1.5</td>
<td>0.03 + 1.5</td>
<td>0.0015 + 1.1</td>
</tr>
<tr>
<td>100 mA</td>
<td>±120,000.00 mA</td>
<td>1 μA</td>
<td>0.004 + 3</td>
<td>0.016 + 5</td>
<td>0.02 + 5</td>
<td>0.03 + 5</td>
<td>0.002 + 1</td>
</tr>
<tr>
<td>200 mA</td>
<td>±200,000.00 mA</td>
<td>1 μA</td>
<td>0.004 + 20</td>
<td>0.016 + 30</td>
<td>0.02 + 30</td>
<td>0.03 + 30</td>
<td>0.002 + 5</td>
</tr>
</tbody>
</table>

24-hour stability values are for 23°C ±1°C and power fluctuation within ±5%.
90-day stability and 90-day and 1-year accuracy values are for 23°C ±5°C.
Add the temperature coefficient for 90-day and 1-year accuracy values for 5°C to 18°C and for 28°C to 40°C.

<table>
<thead>
<tr>
<th>Range</th>
<th>Voltage</th>
<th>Resistance</th>
<th>Output Noise</th>
<th>CMRR (50/60 Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mA</td>
<td>±30 V</td>
<td>≥100 MG</td>
<td>0.02 μAp-p</td>
<td>0.1 μAp-p</td>
</tr>
<tr>
<td>10 mA</td>
<td>±30 V</td>
<td>≥100 MG</td>
<td>0.2 μAp-p</td>
<td>0.3 μAp-p</td>
</tr>
<tr>
<td>100 mA</td>
<td>±30 V</td>
<td>≥10 MG</td>
<td>2 μAp-p</td>
<td>3 μAp-p</td>
</tr>
<tr>
<td>200 mA</td>
<td>±30 V</td>
<td>≥10 MG</td>
<td>10 μAp-p</td>
<td>15 μAp-p</td>
</tr>
</tbody>
</table>

Limiter Section

<table>
<thead>
<tr>
<th>Setting</th>
<th>Range</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current limiter (only during voltage generation)</td>
<td>1 mA to 200 mA</td>
<td>1 mA</td>
</tr>
<tr>
<td>Voltage limiter (only during current generation)</td>
<td>1 V to 30 V</td>
<td>1 V</td>
</tr>
</tbody>
</table>

Response Time (Typical)
10 ms or less for all voltage source and current source ranges.
(Response time is the time from the point when the source begins to change until it reaches within 0.1% of the final value at maximum output, maximum load (pure resistive load), and with no limiter operation.)

Maximum Capacitive and Inductive Loads
Capacitive load: 10 μF
Inductive load: 1 mH
Voltage and Current Monitoring Feature (Optional)

Voltage monitoring feature (only during current generation)

<table>
<thead>
<tr>
<th>Range</th>
<th>Measurement Range</th>
<th>Resolution</th>
<th>Input Resistance</th>
<th>1-Year Accuracy (1 PLC) ±(% of reading + mV)</th>
<th>Temperature Coefficient ±(% of reading + mV)/ºC</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 V</td>
<td>±30.000 V</td>
<td>1 mV</td>
<td>≥10 MΩ</td>
<td>0.02 + 2</td>
<td>0.002 + 0.1</td>
</tr>
</tbody>
</table>

Current monitoring feature (only during voltage generation)

<table>
<thead>
<tr>
<th>Range</th>
<th>Measurement Range</th>
<th>Resolution</th>
<th>Input Resistance</th>
<th>1-Year Accuracy (1 PLC) ±(% of reading + μA)</th>
<th>Temperature Coefficient ±(% of reading + μA)/ºC</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 mA</td>
<td>±200.00 mA</td>
<td>10 μA</td>
<td>≤2 mΩ</td>
<td>0.033 + 300</td>
<td>0.0033 + 30</td>
</tr>
</tbody>
</table>

Integration time 1 to 25 PLC

Trigger source* Internal timer (0.1 s to 3600.0 s), READY, communication, and immediate

Measurement delay (the delay from the trigger point) 0 to 999999 ms (1 ms resolution)

Other features Auto zero, NULL computation, and data storage

*Measurement trigger source

Internal timer For monitoring, 0.1 s to 3600.0 s (0.1 s resolution)

READY For curve tracing during program operation. The timing when READY signals are produced.

Comm. For controlling the GS200 from a PC. Trigger generation through the *TRG command.

Immediate Trigger generation at the end of measurement.

Programming Feature

Maximum number of steps 10000

Trigger External, internal timer, step input, measurement end

Slope 0 s to 3600.0 s (0.1 s resolution)

External Input and Output

BNC input/output IN: TRIG IN, OUTPUT IN, OUT: TRIG CUT, OUTPUT OUT, READY OUT

External synchronization I/O

<table>
<thead>
<tr>
<th>PIN No.</th>
<th>SYNC IN</th>
<th>SYNC OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OUTPUT IN</td>
<td>OUTPUT OUT</td>
</tr>
<tr>
<td>2</td>
<td>N.C.</td>
<td>N.C.</td>
</tr>
<tr>
<td>3</td>
<td>TRIG IN</td>
<td>TRIG CUT</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>N.C.</td>
<td>READY OUT</td>
</tr>
<tr>
<td>6</td>
<td>N.C.</td>
<td>N.C.</td>
</tr>
</tbody>
</table>

Communication Interface

GP-IB Electrical and mechanical specifications Conforms to IEEE Standard 488.2-1978

Functional specifications SH1, AH1, T6, L4, SR1, RL1, FPO, DC1, DT1, CO

Protocol Conforms to IEEE Standard 488.2-1992

Addresses 0 to 30 7651-command-compatible mode available

USB interface Ports 1

Connector Type B

Electrical and mechanical specifications Conforms to USB 2.0

Ethernet (optional)

Ports 1

Connector RJ-45

Electrical and mechanical specifications Conforms to IEEE 802.3

Transmission system 100BASE-TX/10BASE-T

Protocol FTP server, HTTP server, VXI-11 server, DHCP client, command socket

General Specifications

Display 256 × 64 dot vacuum fluorescent display

Internal memory 4 MB (non-volatile; stores setup files and output pattern files)

Warm-up time At least 60 minutes

Operating environment 5 to 40ºC, 20 to 80% RH

Rated supply voltage 100 VAC, 120 VAC, 230 VAC (±10% of each rated voltage, 50/60 Hz)

Rated supply frequency 50/60 Hz

Maximum power consumption Approx. 80 VA

Allowable input voltage 32 V between the high and low terminals

42 Vpeak between the low and ground terminals

0.5 V between the output and sense terminals

250 Vpeak between the ground terminal and the case

Weight Approx. 5 kg

External dimensions Approx. 213 (W) × 88 (H) × 350 (D) mm (excluding protrusions)

External dimensions

Unit: mm
Model and Suffix code

<table>
<thead>
<tr>
<th>Model</th>
<th>Suffix code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS210</td>
<td></td>
<td>DC voltage/current source (front panel output terminals)</td>
</tr>
<tr>
<td>GS211</td>
<td>-1</td>
<td>100 VAC, 50/60 Hz</td>
</tr>
<tr>
<td></td>
<td>-4</td>
<td>120 VAC, 50/60 Hz</td>
</tr>
<tr>
<td></td>
<td>-7</td>
<td>230 VAC, 50/60 Hz</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power cord</td>
<td>-D</td>
<td>UL/CSA standard</td>
</tr>
<tr>
<td></td>
<td>-F</td>
<td>VDE standard</td>
</tr>
<tr>
<td></td>
<td>-R</td>
<td>AS standard</td>
</tr>
<tr>
<td></td>
<td>-Q</td>
<td>BS standard</td>
</tr>
<tr>
<td></td>
<td>-H</td>
<td>GB standard</td>
</tr>
<tr>
<td>Options</td>
<td>/MON</td>
<td>Voltage and current monitoring</td>
</tr>
<tr>
<td></td>
<td>/IC16</td>
<td>Ethernet interface</td>
</tr>
</tbody>
</table>

Standard Accessories

<table>
<thead>
<tr>
<th>GS212, GS211</th>
<th>Power cord, rubber feet (2 pieces), user’s manuals (1 set), fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS211 only</td>
<td>Terminal plug</td>
</tr>
</tbody>
</table>

Rack Mount Kits

<table>
<thead>
<tr>
<th>Model</th>
<th>Product</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>751533-E2</td>
<td>Rack mount kit</td>
<td>For EIA single mount</td>
</tr>
<tr>
<td>751533-J2</td>
<td>Rack mount kit</td>
<td>For JIS single mount</td>
</tr>
<tr>
<td>751534-E2</td>
<td>Rack mount kit</td>
<td>For EIA dual mount</td>
</tr>
<tr>
<td>751534-J2</td>
<td>Rack mount kit</td>
<td>For JIS dual mount</td>
</tr>
</tbody>
</table>

Related product

GS610

Source Measure Unit

- Wide-range source and measurement function
- Source and measurement range:
 - ±110 V, ±s.2 A

GS820

Multi Channel Source Measure Unit

- 2-channel source & sink operation
- Source and measurement range:
 - ±18 V, ±s.2 A (18 V range model)
 - ±50 V, ±s.2 A (50 V range model)

Accessories

<table>
<thead>
<tr>
<th>Model</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>758933</td>
<td>Measurement lead</td>
<td>1 m safety terminal cable with 2 leads (red and black) in a set</td>
</tr>
<tr>
<td>758917</td>
<td>Measurement lead</td>
<td>0.75 m safety terminal cable with 2 leads (red and black) in a set</td>
</tr>
<tr>
<td>758922</td>
<td>Small alligator clip adapter</td>
<td>Safety terminal-alligator clip adapter, containing 2 pieces (red and black) in a set</td>
</tr>
<tr>
<td>758929</td>
<td>Large alligator clip adapter</td>
<td>Safety terminal-alligator clip adapter, containing 2 pieces (red and black) in a set</td>
</tr>
<tr>
<td>758921</td>
<td>Fork terminal adapter</td>
<td>Safety terminal-fork terminal adapter, containing 2 pieces (red and black) in a set</td>
</tr>
<tr>
<td>758924</td>
<td>Conversion adapter</td>
<td>BNC-binding post adapter</td>
</tr>
<tr>
<td>366924</td>
<td>BNC cable</td>
<td>BNC-BNC cable 1 m</td>
</tr>
<tr>
<td>366925</td>
<td>BNC cable</td>
<td>BNC-BNC cable 2 m</td>
</tr>
<tr>
<td>758923</td>
<td>Safety terminal adapter</td>
<td>Spring clamp type 2 adapters (red and black) in a set</td>
</tr>
<tr>
<td>758931</td>
<td>Safety terminal adapter</td>
<td>Screw-in type 2 adapters (red and black) in a set</td>
</tr>
<tr>
<td>751512</td>
<td>Conversion adapter</td>
<td>Banana male to binding post adapter</td>
</tr>
</tbody>
</table>

NOTICE

- Before operating the product, read the user’s manual thoroughly for proper and safe operation.

- Any company’s names and product names mentioned in this document are trade names, trademarks or registered trademarks of their respective companies.

Yokogawa’s Approach to Preserving the Global Environment

- Yokogawa’s electrical products are developed and produced in facilities that have received ISO14001 approval.
- In order to protect the global environment, Yokogawa’s electrical products are designed in accordance with Yokogawa’s Environmentally Friendly Product Design Guidelines and Product Design Assessment Criteria.

This is a Class A instrument based on Emission standards EN61326-1 and EN55011, and is designed for an industrial environment. Operation of this equipment in a residential area may cause radio interference, in which case users will be responsible for any interference which they cause.

YOKOGAWA TEST & MEASUREMENT CORPORATION

Global Sales Dept. /Phone: +81-422-52-6237 E-mail: tm@cs.jp.yokogawa.com Facsimile: +81-422-52-6462

YOKOGAWA CORPORATION OF AMERICA
YOKOGAWA EUROPE B.V.
YOKOGAWA TEST & MEASUREMENT (SHANGHAI) CO., LTD.
YOKOGAWA ELECTRIC KOREA CO., LTD.
YOKOGAWA ENGINEERING ASIA PTE. LTD.
YOKOGAWA INDIA LTD.
YOKOGAWA ELECTRIC CIS LTD.
YOKOGAWA AMERICA DO SUL LTDA.
YOKOGAWA MIDDLE EAST & AFRICA B.S.C(o)

Phone: +1-800-888-6400 E-mail: tmi@us.yokogawa.com Phone: +1-88-6641429 E-mail: tmi@nl.yokogawa.com Phone: +86-21-6239-6363 E-mail: tmi@cs.cn.yokogawa.com Phone: +82-2-2628-3810 E-mail: TMI@kr.yokogawa.com Phone: +81-6-6241-9933 E-mail: TMI@sg.yokogawa.com Phone: +91-60-1458-6396 E-mail: tmi@in.yokogawa.com Phone: +7-495-737-78-68 E-mail: info@ru.yokogawa.com Phone: +7-495-737-78-69 E-mail: info@ru.yokogawa.com Phone: +65-6241-9933 E-mail: TMI@sg.yokogawa.com Phone: +973-17-358100 E-mail: help-ymatmi@bh.yokogawa.com

https://tmi.yokogawa.com/