
User’s
Manual

Model 707741
WE Control API for .Net

IM 707741-62E
2nd Edition

1IM 707741-62E

Foreword
Thank you for purchasing the WE Control API (Model 707741).
This user’s manual describes only the usage and functions specific to the .Net

development platform.
The contents in this manual are given with the premise that you will read the WE Control
API User’s Manual along with this manual.

For a description of the WE Control API, see the following manuals.

Manual Title Manual No.

WE Control API User’s Manual IM 707741-61E (WeAPI.pdf)*

* Henceforth, all IM707741-61E means WeAPI.pdf.

To ensure correct use, please read this manual thoroughly before operation.

Notes
• The contents of this manual describe the WE Control API Ver. 5.0.1.0. If you are

using another version of the API, the information given in this manual may differ
from that of API that you are using.

• The contents of this manual are subject to change without prior notice as a result of
continuing improvements to the instrument’s performance and functions.

• Every effort has been made in the preparation of this manual to ensure the accuracy
of its contents. However, should you have any questions or find any errors, please
contact your nearest YOKOGAWA dealer.

• Copying or reproducing any or all of the contents of this manual without
YOKOGAWA’s permission is strictly prohibited.

Trademarks
• Microsoft, Windows, and Windows NT are either registered trademarks or trademarks

of Microsoft Corporation in the United States and/or other countries.

• Adobe and Acrobat are trademarks of Adobe Systems Incorporated.
• All other company and product names used in this manual are trademarks or

registered trademarks of their respective companies.

Revisions
1st Edition: June 2003

2nd Edition: July 2004

2nd Edition: July 2004 (YK)

All Rights Reserved, Copyright © 2003 Yokogawa Electric Corporation

2 IM 707741-62E

How to Read This Document

How to read the “Parameter”
The words (IN) and (OUT) that follow the parameter indicate whether the parameter is

an input parameter or an output parameter.

How to read the “Example (Visual Basic)”
Variable “ret”
Indicates a variable that contains the returned value.
“value -> parameter value”
Indicates that the variable “value” is set to the parameter value.

3IM 707741-62E

Contents

Foreword ... 1
How to Read This Document .. 2

Chapter 1 Overview .. 1-1
Chapter 2 Using the .Net Compatible WE Control API .. 2-1

2.1 Program Model ... 2-1

2.2 Class Library Reference ... 2-2
2.3 WEAPINet Classes .. 2-5
2.4 WeAPINet Namespace Imports ... 2-6

2.5 Class Declaration ... 2-7
2.6 Initialization and Termination .. 2-8

Chapter 3 Detailed Explanation of Classes .. 3-1
3.1 Classes .. 3-1
3.2 WeControl Class .. 3-4

Init ... 3-4

Exit .. 3-5

GetStationList ... 3-5

3.3 WeStation Class ... 3-7

OpenStation .. 3-7

LinkStation .. 3-7

CloseHandle ... 3-8

GetStationInfo ... 3-8

Power ... 3-9

Restart .. 3-10

SetStationName ... 3-10

GetStationName .. 3-11

IdentifyStation .. 3-11

GetPower .. 3-12

SetStatusLED ... 3-12

GetStatusLED ... 3-13

SetDIOConfig ... 3-13

GetDIOConfig ... 3-14

SetDIO .. 3-15

GetDIO ... 3-15

InitSetup ... 3-16

InitPreset .. 3-16

SaveSetup .. 3-17

LoadSetup .. 3-17

ExecManualTrig .. 3-18

ExecManualArming .. 3-19

SetTrigBusLogic ... 3-19

GetTrigBusLogic ... 3-20

SetEXTIO ... 3-20

GetEXTIO ... 3-21

SetTRIG .. 3-21

GetTRIG ... 3-22

SetTRIGIN .. 3-23

GetTRIGIN .. 3-23

SetClockBusSource .. 3-24

GetClockBusSource ... 3-25

SetRcvTrigPacket ... 3-25

SetSndTrigPacket ... 3-26

1

2

3

4

Index

4 IM 707741-62E

Contents

SetRcvClockPacket .. 3-26

SetSndClockPacket .. 3-27

FireTrigPacket .. 3-28

FireClockPacket ... 3-28

OutputEXTIOEvent ... 3-28

SetArmingSource ... 3-29

GetArmingSource ... 3-29

ShowTrigWindow .. 3-30

CloseTrigWindow.. 3-30

IsTrigWindow .. 3-31

Start .. 3-31

Stop .. 3-32

3.4 WeModule Class .. 3-33
OpenModule ... 3-33

LinkModule ... 3-34

CloseHandle ... 3-35

GetModuleInfo .. 3-35

InitSetup ... 3-36

InitPreset .. 3-36

SaveSetup .. 3-37

LoadSetup .. 3-38

CopySetup .. 3-38

CopyChSetup ... 3-39

CopyChSetupEx ... 3-39

SetControl ... 3-40

GetControl .. 3-40

SetControlEx .. 3-41

GetControlEx .. 3-42

SetQueryControl ... 3-43

SetScaleInfo ... 3-44

GetScaleInfo ... 3-45

SetModuleBus .. 3-46

GetModuleBus .. 3-46

ShowModuleWindow .. 3-47

CloseModuleWindow .. 3-48

IsModuleWindow .. 3-48

ShowLinearScaleWindow ... 3-49

CloseLinearScaleWindow ... 3-49

IsLinearScaleWindow ... 3-50

Start .. 3-50

Stop .. 3-51

StartEx .. 3-51

StopEx .. 3-54

IsRun .. 3-55

GetAcqDataInfoEx .. 3-55

GetAcqDataSize ... 3-64

GetAcqData .. 3-65

GetAcqDataEx .. 3-68

GetScaleData ... 3-70

GetScaleDataEx ... 3-71

LatchData ... 3-72

GetCurrentData .. 3-73

GetScaleCurrentData ... 3-74

GetScaleCurrentDataEx ... 3-76

5IM 707741-62E

Contents

GetMeasureParam ... 3-77

SaveAcqData .. 3-78

SaveScaleData ... 3-78

SaveScaleDataEx ... 3-79

SaveAsciiData .. 3-80

SaveScaleAsciiData ... 3-81

SaveScaleAsciiDataEx ... 3-82

SaveAcqHeader ... 3-82

SavePatternData .. 3-83

LoadPatternData .. 3-83

LoadPatternDataEx .. 3-84

SetOverRun .. 3-85

GetOverRun ... 3-85

CreateEvent .. 3-86

SetEventPattern ... 3-87

ResetEventPattern ... 3-88

SetEventMode .. 3-88

ReleaseEvent ... 3-89

3.5 WeLib Class ... 3-90
ExecMeasureParam ... 3-90

ExecMeasureParamAcqData ... 3-91

GetHandle .. 3-92

IsNan .. 3-93

GetAlarmInfo .. 3-93

MoveMemory .. 3-94

TransAcqData ... 3-95

3.6 WeFilter Class .. 3-98

Wvf2S16GetSize .. 3-98

Wvf2W32GetSize ... 3-99

Wvf2W7281GetSize ... 3-99

Wvf2S16 ... 3-100

Wvf2W32 .. 3-100

Wvf2W7281 .. 3-101

3.7 WeFile Class .. 3-103
HeaderReadS ... 3-103

DataRead ... 3-104

HeaderWriteS ... 3-105

DataWrite .. 3-106

HeaderCsReadS .. 3-107

CsRead ... 3-108

HeaderCsWriteS ... 3-109

CsWrite .. 3-111

HeaderItemRead ...3-112

HeaderItemWrite ...3-113

GetSampleChNum .. 3-114

GetBlockNum ..3-115

InitializeAcqInfo ...3-115

Chapter 4 Error Codes .. 4-1
4.1 Error Codes .. 4-1

WeControl, WeStation, WeModule Class ... 4-1

WeFilter Class .. 4-2

WeFile Class .. 4-3

Index .. Index-1

1

2

3

4

Index

1-1IM 707741-62E

O
verview

1
1. Overview

This user’s manual describes the interface functions for controlling the WE7000 on the .Net platform
(.Net Compatible WE Control API).

The .Net Compatible WE Control API was created using the class library of the Microsoft Windows .Net
environment. The API can be used on the development platforms of Microsoft Visual Basic .Net,
Microsoft Visual C# .Net, and Microsoft Visual C++ .Net.

Below are the main features.

Class-Based Access
Classes corresponding to stations or modules are defined and used to control them (provides class
libraries).

Use of the Plug & Play Mechanism
The plug & play mechanism implemented in the Control Software or existing API can be used for easy
programming.

Opening of the Module Control Panel of the WE Control Software
The module control panels and trigger setting dialog box shown on the WE Control Software can be

called from the API. These can be used easily to check or change the setup data.

Independent from the Communication Format
The WE7000 currently supports optical, Ethernet (10BASE-T and 100BASE-T), and serial (RS-232)
communications. The API absorbs the differences in these communication formats so that application
programs are independent of the communication format.

Support for Microsoft Windows XP Professional/Home Edition and Microsoft Windows 2000
Professional Service Pack 2 or Later
Supports Microsoft Windows XP Professional/Home Edition and Microsoft Windows 2000 Professional
Service Pack 2 or later, which are operating systems that the Visual Studio .NET family supports.

List of Files Provided for .Net

File Name Description

WeAPINet.dll DLL file for the .Net development platform
WeAPINet.pdf (IM707741-62E) WE Control API online manual for the .Net development platform

(Adobe Acrobat Reader 3.0 or later required for opening the file.)
Sample Program Sample programs for various modules (included in the Samples folder)
*.dll DLL files for the WE Control API
WeEvent.ocx Control used to process asynchronous messages (events)

By default, the files listed above excluding the DLL files are copied to the C:\Program Files\WE7000\API directory.
DLL files are copied to the Windows\SYstem32 directory.

Note
The operation of the codes given in this manual are not guaranteed.

Supported OSs
Microsoft Windows XP Professional/Home Edition and Microsoft Windows 2000 Professional Service

Pack 2 or later

Supported Development Platform
Microsoft Visual Studio .Net

Chapter 1 Overview

2-1IM 707741-62E

U
sin

g
 th

e .N
et C

o
m

p
atib

le W
E

 C
o

n
tro

l A
P

I

2

2. Using the .Net Compatible WE Control API

2.1 Program Model
The program model of the .Net Compatible WE Control API is the same as that of the existing WE
Control API. For a description of the program model, see chapter 3, “Programming Model” in the WE
Control API User’s Manual (IM707741-61E). Items that are specific to the .Net development platform

are described below.

Chapter 2 Using the .Net Compatible WE Control API

2-2 IM 707741-62E

2.2 Class Library Reference
The .Net Compatible API is provided as a class library. On the .Net development platform,
WeAPINet.Dll must be referenced. (Here, explanation is given for Visual Basic .Net.)

Below is the procedure for referencing the class library.
1. When you create a new solution, the window below opens.

Right click References in the Solution Explorer displayed on the right.

2. A shortcut menu appears. Click Add Reference.

3. The Add Reference dialog box opens.

Click Browse.

2-3IM 707741-62E

U
sin

g
 th

e .N
et C

o
m

p
atib

le W
E

 C
o

n
tro

l A
P

I

2

4. The Select Component dialog box opens. Select WeAPINet.dll and click Open. By default,
WeAPINet.dll is located in C:\Program Files\WE7000\API.

5. Return to the Add Reference dialog box. WeAPINet.dll appears under Selected Components.
Click OK.

2.2 Class Library Reference

2-4 IM 707741-62E

6. WeAPINet is added to the Solution Explorer. And, the WeAPINet namespace is added to the
solution.

By declaring the required class in the code, the WE7000 can be controlled.

2.2 Class Library Reference

2-5IM 707741-62E

U
sin

g
 th

e .N
et C

o
m

p
atib

le W
E

 C
o

n
tro

l A
P

I

2

2.3 WEAPINet Classes
The WeAPINet.dll component includes the following classes.

Class Name Explanation Description

WeControl Control class Specifies the communication format. Various constants.
WeStation Station class Station control
WeModule Module class Module control
WeLib Library class Helper class
WeFilter Filter class Filters for the WE7281
WeFile File class Access wvf files.

The WeAPINet.dll component consists of the WEAPINet namespace.

This namespace includes the WeControl class, WeStation class, WeModule class, WeLib class,
WeFilter class, WeFile class, and various structures.

2-6 IM 707741-62E

2.4 WeAPINet Namespace Imports
In Visual Basic .Net, you can import namespaces using the Imports statement. Once a namespace is
imported, you no longer have to write out the namespace. (This corresponds to the using directive in

Visual C# .Net.)
The Imports statement is normally written before the Form class definition.

Example
' Import WeAPINet
Imports WeAPINet
Public Class Form1
 Inherits System.Windows.Forms.Form

2-7IM 707741-62E

U
sin

g
 th

e .N
et C

o
m

p
atib

le W
E

 C
o

n
tro

l A
P

I

2

2.5 Class Declaration
To control the WE7000, the class is declared.
Though it depends on the application that you are creating, if the WeControl class, WeStation class, or

WeModule class is accessed in the form code, it is probably best to declare the class as a Form class
member.

' Import WeAPINet
Imports WeAPINet
Public Class Form1
 Inherits System.Windows.Forms.Form
 ' WE7000 class declaration
 Private Comm As WeControl
 Private Station1 As WeStation
 Private WE7271 As WeModule
 Private WE7121 As WeModule
 ' WE classes are created at the beginning of the code that the Windows Form
 Designer generates.
#Region "Code that the Windows Form Designer generated"
 Public Sub New()
 MyBase.New()

 Comm = New WeControl()
 Station1 = New WeStation()
 WE7271 = New WeModule()
 WE7121 = New WeModule()

If WeAPINet is not imported, WeControl in the above example is written as follows:
Private Comm As WEAPINet.WeControl

2-8 IM 707741-62E

2.6 Initialization and Termination

' Initialization. Selects the communication format.
' When using the WE7036 optical module
ret = Comm.Init(WeEvent1.hWnd, "optical devicename=we7036")
' Opens the station named Station 1.
ret = Station1.OpenStation("Station1")
' Turn the remote power of the station ON.
ret = Station1.Power(1)
' Opens the WE7271 installed to the first slot.
ret = WE7271.OpenModule(Station1, "WE7271:1", 1)

' Closes the handle.
ret = Station1.CloseHandle()
' Termination.
ret = Comm.Exit()

3-1IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

3. Detailed Explanation of Classes

3.1 Classes
WeControl Class
Method Description Page

Init Initialization. 3-4
Exit Termination. 3-5
GetStationList Get the list of station names. 3-5

WeStation Class
Method Description Page

OpenStation Open the station. 3-7
LinkStation Open the measuring station link. 3-7
CloseHandle Close the station. 3-8
GetStationInfo Get station information. 3-8
Power Turn ON/OFF the standby power to the measuring station. 3-9
ReStart Restart the measuring station. 3-10
SetStationName Set the station name and the comment. 3-10
GetStationName Get the station name and the comment. 3-11
IdentifyStation Identify the measuring station. 3-11
GetPower Get the standby power ON/OFF state of the measuring station. 3-12
SetStatusLED Set the STATUS LED. 3-12
GetStatusLED Get the STATUS LED. 3-13
SetDIOConfig Set the DIO configuration. 3-13
GetDIOConfig Get the DIO configuration. 3-14
SetDIO Set the DIO. 3-15
GetDIO Get the DIO. 3-15
InitSetup Initialize the current settings. 3-16
InitPreset Replace preset values with default values. 3-16
SaveSetup Save the current setup data to a file or update the preset values with the 3-17

current settings.
LoadSetup Load the setup data and update the current settings or update the 3-17

current settings with the preset values.
ExecManualTrig Generate a manual trigger. 3-18
ExecManualArming Generate an arming signal. 3-19
SetTrigBusLogic Set the trigger bus logic. 3-19
GetTrigBusLogic Get the trigger bus logic. 3-20
SetEXTIO Set the input/output of the trigger/time base input/output pin of the EXT. 3-20

I/O connector.
GETEXTIO Get the input/output setting of the trigger/time base input/output pin of 3-21

the EXT. I/O connector.
SetTRIG Set the trigger signal input and polarity from the TRIG terminal. 3-21
GetTRIG Get the trigger signal input and polarity from the TRIG terminal. 3-22
SetTRIGIN Set the trigger signal input and polarity from the TRIG IN terminal. 3-23
GetTRIGIN Get the input and polarity of the trigger signal entering the TRIG IN 3-23

terminal.
SetClockBusSource Set the time base. 3-24
GetClockBusSource Get the time base settings. 3-25
SetRcvTrigPacket Set the receive station for trigger packets. 3-25
SetSndTrigPacket Set the source station for trigger packets. 3-26
SetRcvClockPacket Set the receive station for time base packets. 3-26
SetSndClockPacket Set the source station for time base packets. 3-27
FireTrigPacket Issue a trigger packet. 3-28
FireClockPacket Issue a time base packet. 3-28
OutputEXTIOEvent Set the event output of the EXT. I/O connector. 3-28
SetArmingSource Set the arming source. 3-29
GetArmingSource Get the arming source setting. 3-29
ShowTrigWindow Show the trigger setting dialog box. 3-30
CloswTrigWindow Close the trigger setting dialog box. 3-30
IsTrigWindow Get the show/hide status of the trigger setting dialog box. 3-31
Start Start the measurement module operation (by stations). 3-31
Stop Stop the measurement module operation (by stations). 3-32

Chapter 3 Detailed Explanation of Classes

3-2 IM 707741-62E

WeModule Class
Method Description Page

OpenModule Open the module. 3-33
LinkModule Open the module link. 3-34
CloseHandle Close the module. 3-35
GetModuleInfo Get module information. 3-35
InitSetup Initialize the current settings. 3-36
InitPreset Replace preset values with default values. 3-36
SaveSetup Save the current setup data to a file or update the preset values with the 3-37

current settings.
LoadSetup Load the setup data and update the current settings or update the 3-38

current settings with the preset values.
CopySetup Copy the setup data between modules. 3-38
CopyChSetup Copy setup data between slots. 3-39
CopyChSetupEx Copy setup data between channels. 3-39
SetControl Set setup data. 3-40
GetControl Get setup data. 3-40
SetControlEx Set setup data (extended). 3-41
GetControlEx Get setup data (extended). 3-42
SetQueryControl Set the setup data and get the data. 3-43
SetScaleInfo Set scale conversion information. 3-44
GetScaleInfo Get scale conversion information. 3-45
SetModueBus Set the trigger source/time base source/arming. 3-46
GetModuleBus Get the trigger source/time base source/arming settings. 3-46
ShowModuleWindow Show the module operation panel. 3-47
CloseModuleWindow Close the module operation panel. 3-48
IsModuleWindow Get the show/hide status of the module operation panel. 3-48
ShowLinearScaleWindow Show the scale conversion setting dialog box. 3-49
CloseLinearScaleWindow Close the scale conversion setting dialog box. 3-49
IsLinearScaleWindow Get the show/hide status of the scale conversion setting dialog box. 3-50
Start Start the measurement module operation. 3-50
Stop Stop the measurement module operation. 3-51
StartEx Start the measurement module operation (extended). 3-51
StopEx Stop the measurement module operation (extended). 3-54
IsRun Get the execution status (run/stop) of the measurement module. 3-55
GetAcqDataInfoEx Get the acquisition data information. 3-55
GetAcqDataSize Get the acquisition data size. 3-64
GetAcqData Get acquisition data (raw data). 3-65
GetAcqDataEx Get acquisition data (extended). 3-68
GetScaleData Get the data after scale conversion. 3-70
GetScaleDataEx Get the data after scale conversion (extended). 3-71
LatchData Issue a latch command. 3-72
GetCurrentData Get instantaneous data. 3-73
GetScaleCurrentData Get the instantaneous data after scale conversion. 3-74
GetScaleCurrentDataEx Get the instantaneous data after scale conversion (extended). 3-76
GetMeasureParam Get automated measurement values of waveform parameters. 3-77
SaveAcqData Save acquisition data (raw data). 3-78
SaveScaleData Save scaled data. 3-78
SaveScaleDataEx Save scaled data (extended). 3-79
SaveAsciiData Save ASCII data. 3-80
SaveScaleAsciiData Save the ASCII data of the scaled data. 3-81
SaveScaleAsciiDataEx Save the ASCII data of the scaled data (extended). 3-82
SaveAcqHeader Save the header (waveform information) file. 3-82
SavePatternData Save the pattern data (arbitrary waveform data). 3-83
LoadPatternData Load the pattern data (arbitrary waveform data). 3-83
LoadPatternDataEx Load the pattern data (arbitrary waveform data) (extended). 3-84
SetOverRun Enable/Disable overrun detection. 3-85
GetOverRun Get the overrun detection status. 3-85
CreateEvent Request generation of an event. 3-86
SetEventPattern Set the factor that triggers the event. 3-87
ResetEventPattern Clear the factor that triggers the event. 3-88
SetEventMode Set the event mode. 3-88
ReleaseEvent Release the event handle. 3-89

3.1 Classes

3-3IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

WeLib Class
Method Description Page

ExecMeasureParam Execute waveform parameter computation. 3-90
ExecMeasureParamAcqData Execute waveform parameter computation using raw data. 3-91
GetHandle Get the handle from the second parameter of the event. 3-92
IsNan Check whether the data is non-numeric. 3-93
GetAlarmInfo Get alarm information. 3-93
RtlMoveMemory Copy memory contents. 3-94
TransAcqData Convert acquisition data. 3-95

WeFilter Class
Method Description Page

Wvf2S16GetSize Get the byte size when the waveform data in the specified file is 3-98
converted to s16 format.

Wvf2W32GetSize Get the byte size when the waveform data in the specified file is 3-99
converted to w32 format.

Wvf2W7281GetSize Get the byte size when the waveform data in the specified file is 3-99
converted to w7281 format.

Wvf2S16 Convert the specified file to s16 format. 3-100
Wvf2W32 Convert the specified file to w32 format. 3-101
Wvf2W7281 Convert the specified file to w7281 format. 3-102

WeFile Class
Method Description Page

HeaderReadS Read the header file of the single file. 3-103
DataRead Read the data file of the single file. 3-104
HeaderWriteS Write the header file of the single file. 3-105
DataWrite Write the data file of the single file. 3-106
HeaderCsReadS Read the header file of the sequential file. 3-107
CsRead Read the data file of the sequential file. 3-108
HeaderCsWriteS Write the header file of the sequential file. 3-109
CsWrite Write the data file of the sequential file. 3-111
HeaderItemRead Read the data of the specified item. 3-112
HeaderItemWrite Write the data to the specified item. 3-113
GetSampleChNum Get the number of samples and number of channels. 3-114
GetBlockNum Get the number of blocks. 3-115
InitializeAcqInfo Store the required data in the data information structure. 3-115

Note
• In the code examples of the detailed explanation of methods, it is assumed that WeControl, WeStation,

WeModule, WeLib, and WeFilter classes are declared as Comm, Station, Module1, Lib1, Filter, and File,
respectively.

• In the code examples of the detailed explanation of methods, it is assumed that variable ret that stores the
return value of each method is declared as Short.

• The constants that appear in the detailed explanation of the methods are defined in the WeControl1 class.
Example
In the case of WE_CONTROLLER
Ret = Comm.Init(WeOCX1.hWnd,”Ethernet”,WEControl.WE_CONTROLLER)
As shown above, the constants are written as WEControl.XXXX (where XXXX is the definition symbol).

• Interfaces that are indicated as old interface in the explanations remain for compatibility with older versions.

3.1 Classes

3-4 IM 707741-62E

3.2 WeControl Class

Init
Description
This is the function that carries out the initialization procedures. This method must be called first when
using the WE Control API in an application program. Some of the activities that take place when this

function is called include: the initialization of the network, the automatic detection of connected stations,
and the initialization of the API environment.

Syntax
Init (hWnd As Integer, comm As String) As Short

Init (hWnd As Integer, comm As String, type As Short) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
hWnd (IN) Window handle for receiving the WE7000 defined events (described later) that

are generated by the station or module. For Visual Basic, specify the window
handle of the WeEvent control (WeEvent.ocx). When creating a program without
using WeEvent.ocx, specify 0 (NULL).

comm (IN) The type of communication interface between the PC and meauring station.
"optical devicename = we7034" when using Optical Interface card WE7033/
WE7034
"optical devicename = we7036" when using Optical Interface card WE7035/

WE7036
"serial [option]" when using serial port (only for WE400/WE800)
Enter [option] settings as shown below. Be sure to specify an IP address and

subnet mask.IP address: IP = IP address for the PC (ex. 192.168.21.128)
Subnet Mask: NETMASK = subnet mask (ex. 255.255.255.0)
Port Number (optional): PORTNO = port number (default is 34191)

Group number (optional): GROUPNO = group number (default is 0)
Transmission Mode (optional): COMPATIBLE = ON / OFF (default is ON)
[option] example: IP=192.168.21.128 NETMASK=255.255.255.0

PORTNO=34191 GROUPNO=1 COMPATIBLE=OFF
"ethernet [option]"
The option can be omitted. If you wish to enter settings, follow the instructions

above. If you only have one Ethernet interface, it is not necessary to specify an
IP address or subnet mask. When using more than one Ethernet interface,
specify which Ethernet interface you are using in the IP address. It’s also

necessary to enter the subnet mask.
"USB" when using USB interface (only for WE500/WE900)
For detailed information regarding this option, see “Start Option” in the WE7000

PC-Based Measurement Instruments and WE7051 Ethernet Module*/WE7052
Fast Ethernet Module* User’s Manuals.
* Only for WE400/WE800.

3-5IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

type (IN) Execution mode of the application program.
There are two execution modes: the controller mode in which the network and

station can be controlled, and the server mode in which certain functions can be
executed (store or monitor data, for example). The current version only supports
the controller mode.

WE_CONTROLLER ' Controller
WE_SERVER ' Server
(On I/F that has type omitted, WE_CONTROLLER is set.)

Note:
Specify the window that will receive the WE7000 defined events in the hWnd parameter.

Regardless of the version of Windows, if more than one Ethernet card is installed you must specify an
IP address and subnet mask.

Example (Visual Basic .Net)
' Receive the events with the WeEvent control (WeEvent.ocx).

' Initialize by specifying optical interface (WE7035/WE7036) and

' controller mode.

ret = Comm.Init (WeEvent1.hWnd, "optical devicename = we7036")

or

ret = Comm.Init (WeEvent1.hWnd, "optical devicename = we7036",

WeControl.WE_CONTROLLER)

Exit
Description
This is the method that carries out the termination procedures. Make sure to execute this method at

the end of the application program.

Syntax
Exit () As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
None

Example (Visual Basic .Net)
' Carry out termination procedures.

ret = Comm.Exit ()

GetStationList
Description
Gets the list of station names on a network.

Syntax
GetStationList (ByRef num As Short, list() As StationList) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

3.2 WeControl Class

3-6 IM 707741-62E

Parameters
num (OUT) The number of measuring stations (includes the controller). The maximum

number of measuring stations is defined by MaxStationNum.
list (OUT) The pointer to the structure containing the station name list.

The first member of the list contains controller information. The structure
containing the station name list is as follows:
Structure StationList ' Structure containing the station

' name list
name As String * MaxStationName ' Station name
addr As Integer ' Station’s logical address

Structure Type
The maximum number of stations is defined by MaxStationNum.

Example (Visual Basic .Net)
' Get the list of station names.

Dim list(WeControl.MaxStationNum) As StationList

Dim num As Short

Num = 0

ret = Station.GetStationList (num, list)

3.2 WeControl Class

3-7IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

3.3 WeStation Class

OpenStation
Description
Gets the station handle for controlling the station, by specifying the station name.

Syntax
OpenStation (name As String) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
name (IN) Station name. To get the handle that can be used to control all the measuring

stations on the network, specify “BROADCAST.”

Note:
By opening, this method saves within the class the station handle used to identify the station.

The station handle is stored to variable member hSt.
If BROADCAST is specified, some methods in the class cannot be used (see the explanation of each
method). In addition, if a network contains multiple measuring stations with the same name, only the

handle of the closest measuring station can be obtained. Therefore, make sure to assign different
names to measuring stations on the same network.

Example (Visual Basic .Net)
' Open the measuring station with the name "Station1."

ret = Station.OpenStation ("Station1")

LinkStation
Description
Gets the station link handle. The station link handle can be used to simultaneously control multiple
stations.

Syntax
LinkStation (num As Short, StList() As WeStation) As Short

LinkStation (num As Short, hStList() As Integer) As Short

Old interface
LinkStation (num As Short, ByRef hStList As Integer) As Short ()

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
num (IN) The number of stations to link

StList (IN) An array of station classes you wish to link. The number of entries must adhere
to the number specified by num.

hStList (IN) An array of the station handles of the stations you wish to link. The number of

entries must adhere to the number specified by num.

3-8 IM 707741-62E

Example (Visual Basic .Net)
' Get the link handle of two stations, then turn ON the power.

Dim LinkSt As WeStation

Dim Station1 As WeStation

Dim Station2 As WeStation

Dim StList(1) As WeStation

' Open the measuring station with the name "Station 1."

ret = Staton1.OpenStation ("Station1")

' Open the measuring station with the name "Station 2."

ret = Station2.OpenStation ("Station2")

StList (0) = Station1

StList (1) = Station2

ret = LinkSt.LinkStation (2, StList)

ret = LinkSt.Power (WeControl.WE_ON)

CloseHandle
Description
Closes the measuring station.

Syntax
CloseHandle () As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
None

Note:
The station handle and link handle are released internally. Releasing the station handle also releases
the module handles and module link handles within the measuring station.

Example (Visual Basic .Net)
' Close the measuring station with the name "Station 1."

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the module at slot 2 with a link number of 1.

ret = Module1.OpenModule (Station, "2", 1)

ret = Station.CloseHandle ()

GetStationInfo
Description
Gets the station information.

Syntax
GetStationInfo (ByRef info As StationInfoEx) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

3.3 WeStation Class

3-9IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Parameters
info (OUT) The pointer to the extended measuring station information structure to be

retrieced
The extended measuring station information structure is as follows:

Structure ModuleInfo ' Module information structure
product As String * 8 ' Product name(A string

' expressed as WExxxx.)

' (Example: WE7111)
chNum As ushort ' Number of channels per

' module

connect As Byte ' Number of links. This number
' is 1if the module is not linked.

connecttype As Byte ' Link condition

' WE_PARENT_MODULE
' The parent module of the link
' (The left most module of the

' link)
' WE_CHILD_MODULE
' The child module of the link

' WE_SINGLE_MODULE
' Module that is not linked.

version As uint ' Software version of the

' module driver
End Structure

Structure StationInfo ' Station information structure

addr As ushort ' Station’s logical address
state As Byte ' Power ON/OFF state of the

' remote station
' WE_OFF: Off

' WE_ON: On
moduleNum As Byte ' Number of modules that are

' inserted

name As String * MaxStationName ' Station name
comment As String * MaxStationComment ' Comment

End Structure

Example (Visual Basic .Net)
' Get the station information of Station 1.

' Open the measuring station with the name "Station 1."

Dim Info As StationInfoEx

Dim mdInfo(WeControl.MaxModuleNum - 1) As ModuleInfo

Info.mdInfo = mdInfo

ret = Station.OpenStation ("Station1")

ret = Station.GetStationInfo (info)

Power
Description
Turns ON/OFF the measuring station’s power.

Syntax
Power (sw As Byte) As Short

3.3 WeStation Class

3-10 IM 707741-62E

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
sw (IN) Switch state

WE_OFF turns OFF the power. WE_ON turns ON the power.

Example (Visual Basic .Net)
' Turn ON Station 1.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.Power (WeControl.WE_ON)

Restart
Description
Restarts the station. The operation is similar to turning ON the power. However, the communication
module does not restart.

Syntax
Restart () As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
None

Example (Visual Basic .Net)
' Restarts Station 1.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.Restart()

SetStationName
Description
Sets the station name and the comments for the measuring station.

Syntax
SetStationName (name As String, comment As String) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful. Attempting to set a station name that

already exists results in an error.

Parameters
name (IN) A string containing the station name (up to 256 characters)

Use " " if you are not specifying a name. The default station name is comprised

of the string “Station” + the logical address number (for example: Station 1).
comment (IN) A string containing a comment (up to 256 characters)

Use " " if you are not specifying a comment.

3.3 WeStation Class

3-11IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Example (Visual Basic .Net)
' Set "Plant 1" for the station name and "Measure Sample" for the comment.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.SetStationName ("Plant 1", "Measure Sample")

Note:
Executing this command overwrites the flash ROM of the measuring station. There is a limitation on the
number of times the flash ROM can be overwritten (approx. 100,000 times). Therefore, minimize the
execution of this command.

GetStationName
Description
Gets the station name and the comment for the measuring station.

Syntax
GetStationName (ByRef name As String, ByRef comment As String) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
name (OUT) Station name (up to 256 characters)
comment (OUT) A string containing a comment (up to 256 characters)

Example (Visual Basic .Net)
' Gets the station name and the comment.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

Dim strName As String

Dim strComment As String

ret = Station.GetStationName(strName,strComment)

IdentifyStation
Description
For measuring station identification, the LED of the optical interface module of the specified measuring
station blinks. This is valid only when the optical interface module is being used as the communication

interface.

Syntax
IdentifyStation () As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
None

3.3 WeStation Class

3-12 IM 707741-62E

Example (Visual Basic .Net)
' Identify Station 1.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.IdentifyStation ()

GetPower
Description
Gets the power ON/OFF state of the station.

Syntax
GetPower (ByRef sw As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
sw (OUT) Power ON/OFF state of the remote station

WE_OFF ' The measuring station’s power is OFF.

WE_ON ' The measuring station’s power is ON.

Example (Visual Basic .Net)
' Get the power’s ON/OFF state of Station 1.

' Open the measuring station with the name "Station 1."

ret = Station.WeOpenStation ("Station 1")

Dim sw As Byte

ret = Station.WeGetPower (sw)

SetStatusLED
Description
Turns ON/OFF the measuring station’s STATUS LED.

Syntax
SetStatusLED (LEDNo As Byte,status As Byte)As Integer

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
LEDNo (IN) LED number

WE_LEDA ' LED A
WE_LEDB ' LED B

status (IN) LED setting
WE_OFF ' OFF
WE_RED ' Illuminate in red

WE_GRN ' Illuminate in green
WE_ORG ' Illuminate in orange

3.3 WeStation Class

3-13IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Example (Visual Basic)
' Illuminate LED A of Station 1 in green.

' Open the measuring station with the name "Station1."

ret =StationOpenStation ("Station1")

ret =SetStatusLED (WE_LEDA,WE_GRN)

Note:
This function can be used only on the WE500 and WE900.

GetStatusLED
Description
Gets the illumination status of the measuring station’s STATUS LED.

Syntax
GetStatusLEDA (LEDNo As Byte,ByRef status As Byte)As Integer

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
LEDNo (IN) LED number

WE_LEDA ' LED A

WE_LEDB ' LED B
status (OUT) LED A status

WE_OFF ' OFF
WE_RED ' Illuminated in red

WE_GRN ' Illuminated in green
WE_ORG ' Illuminated in orange

Example (Visual Basic)
' Get the status of LED A on Station 1.

' Open the measuring station with the name "Station1."

ret =StationOpenStation ("Station1")

ret =GetStatusLED (WE_LEDA,status)

Note:
This function can be used only on the WE500 and WE900.

SetDIOConfig
Description
Sets the input/output direction, the change detection polarity, and the change detection mask of the
DIO pin of the measuring station’s EXT IO.

Syntax
SetDIOConfig (Pin As Integer,Direct As Byte,Pol As Byte,Mask As Byte)As Integer

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

3.3 WeStation Class

3-14 IM 707741-62E

Parameters
Pin(IN) Pin number (0 to 3)
Direct (IN) Input/output direction setting

WE_KEEP ' Keep current setting

WE_IN ' Input
WE_OUT ' Output

Pol (IN) Change detection polarity setting

WE_KEEP ' Keep current setting
WE_RISE 'Rise
WE_FALL 'Fall

Mask (IN) Change detection mask setting
WE_KEEP ' Keep current setting
WE_MASK ' Not detect (if this is specified, WE_EV_DIO# events will not

be activated.)
WE_DETECT ' Detect (if this is specified, WE_EV_DIO# (where # is the pin

number) events will be activated. To generate an event, the

event must also be defined using Create Event.)

Example (Visual Basic)
' Set conditions for pin number 1 on Station 1.

' Open the measuring station with the name "Station1."

ret =StationOpenStation ("Station1")

ret =Power (WE_ON)

ret =CreateEvent (WE_EV_DIO1,erHandle)

ret =SetDIOConfig (1,WE_IN,WE_RISE,WE_DETECT)

Note:
This function can be used only on the WE500 and WE900.

GetDIOConfig
Description
Gets the input/output direction, the change detection polarity, and the change detection mask of the
DIO pin of the measuring station’s EXT IO.

Syntax
GetDIOConfig (Pin As Integer,ByRef Direct As Byte,ByRef Pol As Byte,ByRef Mask As Byte)As Integer

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
Pin (IN) Pin number (0 to 3)
Direct (OUT) Input/Output direction

WE_IN ' Input
WE_OUT ' Output

Pol (OUT) Change detection polarity

WE_RISE 'Rise
WE_FALL 'Fall

Mask (OUT) Change detection mask

WE_MASK ' Not detect
WE_DETECT ' Detect

3.3 WeStation Class

3-15IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Example (Visual Basic)
' Get conditions for pin number 1 on Station 1.

Dim ret As Integer

Dim Direct As Byte

Dim Pol As Byte

Dim Mask As Byte

' Open the measuring station with the name "Station1."

ret =StationOpenStation ("Station1")

ret =GetDIOConfig(1,Direct,Pol,Mask)

Note:
This function can be used only on the WE500 and WE900.

SetDIO
Description
Sets the output on the DIO pin of the measuring station’s EXT IO.

Syntax
SetDIO (Pin As Integer,Val As Byte)As Integer

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
Pin (IN) Pin number (0 to 3)
Val (IN) DIO output setting

WE_KEEP ' Keep current setting
WE_DIO_OFF ' Low status
WE_DIO_ON ' High status

Example (Visual Basic)
' Output DIO pin number 1 on Station 1.

' Open the measuring station with the name "Station1."

ret =StationOpenStation ("Station1")

ret =SetDIO (1,WE_DIO_ON)

Note:
This function can be used only on the WE500 and WE900.

GetDIO
Description
Gets the status of the DIO pin of the measuring station’s EXT IO.

Syntax
GetDIO (Pin As Integer,ByRef Val As Byte)As Integer

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

3.3 WeStation Class

3-16 IM 707741-62E

Parameters
Pin (IN) Pin number (0 to 3)
Val (OUT) DIO input/output status

WE_DIO_OFF ' Low status

WE_DIO_ON ' High status

Example (Visual Basic)
' Get the input/output status of DIO pin number 1 on Station 1.

' Open the measuring station with the name "Station1."

ret =StationOpenStation ("Station1")

ret =GetDIO (1,Val)

Note:
This function can be used only on the WE500 and WE900.

InitSetup
Description
Resets the current settings of the measuring station to default values.
The setup data of all modules in the measuring station and the trigger settings (synchronization

between modules) of the measuring station are applicable.

Syntax
InitSetup () As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
None

Example (Visual Basic .Net)
' Reset the setup data of the measuring station to the default values.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.InitSetup ()

InitPreset
Description
Update the current preset values of the measuring station to default values.
The setup data of all modules in the measuring station and the trigger settings (synchronization

between modules) of the measuring station are applicable.

Syntax
InitPreset () As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

3.3 WeStation Class

3-17IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Parameters
None

Example (Visual Basic .Net)
' Update the preset values of the measuring station to default values.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.InitPreset ()

Note:
Executing this command overwrites the flash ROM of the measuring station. There is a limitation on the
number of times the flash ROM can be overwritten (approx. 100,000 times). Therefore, minimize the

execution of this command.

SaveSetup
Description
Saves the current setup data of the measuring station or updates the preset values. When saving to a
file, the file is saved with a file extension “.set.”

Syntax
SaveSetup (filename As String) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
filename (IN) File name. Specify the file without the file extension “.set.” Specifying " " for the

file name updates the preset values.

Example (Visual Basic .Net)
' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Save the current setup data to the file, c:\param.set.

ret = Station.SaveSetup ("c:\param")

' Update the preset values with the current setup data.

ret = Station.SaveSetup ("")

Note:
Executing this command when only " " is specified for the file name overwrites the flash ROM of the

measuring station. There is a limitation on the number of times the flash ROM can be overwritten
(approx. 100,000 times). Therefore, minimize the execution of this command.

LoadSetup
Description
Updates the current setup data of the measuring station using the setup data file or preset values.

Syntax
LoadSetup (filename As String) As Short

3.3 WeStation Class

3-18 IM 707741-62E

Return value
Returns 0 if successful. Returns an error code if unsuccessful. The module configuration of the
measuring station and the module configuration in the setup data file (including the installation position
of the module) are compared. If they match, the setup data are updated (successful). If not, an error is

returned.

Parameters
filename (IN) File name. Specify the file without the file extension “.set.” Specifying " " for the

file name updates the current settings using preset values.

Example (Visual Basic .Net)
' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Update the current setup data with the file, c:\param.set.

ret = Station.LoadSetup ("c:\param")

' Update the current setup data with the preset values.

ret = Station.LoadSetup ("")

ExecManualTrig
Description
Manually generates a trigger signal on the trigger bus that is common to all modules in the station. The
trigger bus is used as a trigger source and the modules are triggered off of it.

Syntax
ExecManualTrig (busNo As Byte, pulse As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
busNo (IN) Trigger bus selection

WE_TRG1 ' BUSTRG 1
WE_TRG2 ' BUSTRG 2

pulse (IN) Trigger pulse selection
WE_TRGUP ' UP
WE_TRGDOWN ' DOWM

WE_TRGONESHOT ' One-shot pulse

Example (Visual Basic .Net)
' Generates a trigger signal on trigger bus "BUSTRG 1" using one-

' shot pulse.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.ExecManualTrig (WeControl.WE_TRG1, WeControl.WE_MANTRGONESHOT)

3.3 WeStation Class

3-19IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

ExecManualArming
Description
Manually generates an arming signal.

Syntax
ExecManualArming () As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
None

Example (Visual Basic .Net)
' Manually generate an arming signal.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.ExecManualArming ()

SetTrigBusLogic
Description
Sets the trigger condition of the trigger bus (AND/OR operation). This function is effective when

multiple modules are driving the trigger bus. You can specify the trigger to occur when all trigger
conditions are satisfied (AND operation) or when one of the trigger conditions is satisfied (OR
operation).

Syntax
SetTrigBusLogic (item As Byte, logic As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
item (IN) Trigger bus selection

WE_TRG1 ' Set bus trigger “BUSTRG 1.”

WE_TRG2 ' Set bus trigger “BUSTRG 2.”
logic (IN) Logic selection

WE_TRGAND ' Set the bus logic to AND.

WE_TRGOR ' Se the bus logic to OR.

Example (Visual Basic .Net)
' Set the logic of bus trigger "BUSTRG 1" to AND.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.SetTrigBusLogic (WeControl.WE_TRG1, WeControl.WE_TRGAND)

3.3 WeStation Class

3-20 IM 707741-62E

GetTrigBusLogic
Description
Gets the trigger condition of the trigger bus.

Syntax
GetTrigBusLogic (item As Byte, ByRef logic As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
item (IN) Trigger bus selection

WE_TRG1 ' Get trigger bus “BUSTRG 1. “
WE_TRG2 ' Get trigger bus “BUSTRG 2. “

logic (OUT) Trigger bus logic
WE_TRGAND ' Bus logic is AND.
WE_TRGOR ' Bus logic is OR.

Example (Visual Basic .Net)
' Get the bus logic of bus trigger "BUSTRG 1."

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

Dim logic As Byte

ret = Station.GetTrigBusLogic (WeControl.WE_TRG1, logic)

SetEXTIO
Description
Sets the input/output setting of the trigger signal I/O pin and the time base signal I/O pin of the EXT I/O
connector located on the front panel of the station. These signal pins are bi-directional and can (1)
pass the external signals to the trigger and clock buses in the station, (2) output the trigger signal or the

clock, and (3) provide input signals for other stations. In effect, multiple stations can be synchronized.

Syntax
SetEXTIO (trig1 As Byte, trig2 As Byte, clock As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
trig1 (IN) Input/output setting of the trigger signal I/O 1 pin of the EXT I/O terminal

WE_TRGIN ' Use as an input pin. Pass the external signal to the
' trigger bus “BUSTRG 1.”

WE_TRGOUT ' Use as an output pin.
' Output the trigger bus signal “BUSTRG 1.”

trig2 (IN) Input/output setting of the trigger signal I/O 2 pin of the EXT I/O terminal

WE_TRGIN ' Use as an input pin. Pass the external signal to the
' trigger bus “BUSTRG 2.”

WE_TRGOUT ' Use as an output pin.

' Output the trigger bus signal “BUSTRG 2.”
clock (IN) Input/output setting of the time base signal I/O pin of the EXT I/O terminal

WE_CMNCLKOUT ' Use as an output pin.

WE_CMNCLKIN ' Use as an input pin.

3.3 WeStation Class

3-21IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Example (Visual Basic .Net)
' Set the trigger signal I/O 1 pin to output, trigger signal I/O 2

' pin to input, and the time base signal I/O pin to input a common clock.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.SetEXTIO (WeControl.WE_EXTIOTRGOUT, WeControl.WE_EXTIOTRGIN,

WeControl.WE_CMNCLKIN)

GetEXTIO
Description
Gets the input/output setting of the trigger I/O pin and the timebase I/O pin of the EXT I/O connector
located on the front panel of the station.

Syntax
GetEXTIO (ByRef trig1 As Byte, ByRef trig2 As Byte,ByRef clock As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
trig1 (OUT) Input/output setting of the trigger1 signal I/O 1 pin of the EXT I/O terminal

WE_TRGIN ' Use as an input pin. Pass the external signal to the

' trigger bus “BUSTRG 1.”
WE_TRGOUT ' Use as an output pin.

' Output the trigger bus signal “BUSTRG 1.”
trig2 (OUT) Input/output setting of the frigger2 signal I/O 2 pin of the EXT I/O terminal

WE_TRGIN ' Use as an input pin. Pass the external signal to the
' trigger bus “BUSTRG 2.”

WE_TRGOUT ' Use as an output pin.

' Output the trigger bus signal “BUSTRG 2.”
clock (OUT) Input/output setting of the time base signal I/O pin of the EXT I/O terminal

WE_CMNCLKOUT ' Use as an output pin.

WE_CMNCLKIN ' Use as an input pin.

Example (Visual Basic .Net)
' Gets the input/output setting of the trigger signal I/O 1,

' trigger signal I/O 2, and

' time base signal I/O pins of the EXT I/O terminal.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

Dim trig1 As Byte, trig2 As Byte

Dim clock As Byte

ret = Station.GetEXTIO (trig1, trig2, clock)

SetTRIG
Description
Sets the destination and polarity of the trigger bus signal entering the TRIG terminal located on the
front panel of the measuring station.

Syntax
SetTRIG (item As Byte, polarity As Byte) As Short

3.3 WeStation Class

3-22 IM 707741-62E

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
item (IN) Select the trigger bus destination of the signal entering the TRIG terminal.

WE_TRGNONE ' Do not pass/output signal to the trigger bus.

WE_TRG1IN ' Pass the signal to trigger bus “BUSTRG 1.”
WE_TRG2IN ' Pass the signal to trigger bus “BUSTRG 2.”
WE_BOTHIN ' Pass the signal to trigger buses “BUSTRG 1, 2.”

WE_TRG1OUT ' Output the signal to trigger bus “BUSTRG 1.”
WE_TRG2OUT ' Output the signal to trigger bus “BUSTRG 2.”

polarity (IN) Select the polarity of the input signal at the TRIG terminal

WE_TRGPOS ' Input/output the signal as is.
WE_TRGNEG ' Input/output the signal after inverting it.

Example (Visual Basic .Net)
' Pass/output the trigger signal entering the TRIG terminal to trigger buses

' "BUSTRG 1" and "BUSTRG 2" and set the polarity to positive.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.SetTRIG (WeControl.WE_BOTH, WeControl.WE_TRGPOS)

Note:
WE_TRG1OUT, WE_TRG2OUT, and WE_CMNCLKOUT are ignored on the WE400 or WE800. (The
function ends normally, but does not work.)

GetTRIG
Description
Gets the destination and polarity of the trigger input signal entering the TRIG terminal located on the
front panel of the station.

Syntax
GetTRIG (ByRef item As Byte, ByRef polarity As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.3

Parameters
item (OUT) Select the trigger bus destination of the signal entering the TRIG terminal.

WE_TRGNONE ' Do not pass/output signal to the trigger bus.
WE_TRG1 ' Pass the signal to trigger bus “BUSTRG 1.”
WE_TRG2 ' Pass the signal to trigger bus “BUSTRG 2.”

WE_BOTH ' Pass the signal to trigger buses “BUSTRG 1, 2.”
WE_TRG1OUT ' Output the signal to trigger bus “BUSTRG 1.”
WE_TRG2OUT ' Output the signal to trigger bus “BUSTRG 2.”

polarity (OUT) Select the polarity of the input signal at the TRIG terminal
WE_TRGPOS ' Input the signal as is.
WE_TRGNEG ' Input the signal after inverting it.

3.3 WeStation Class

3-23IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Example (Visual Basic .Net)
' Get the destination and polarity of the trigger bus signal
' entering the TRIG terminal.
' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")
Dim item As Byte
Dim pol As Byte

ret = Station.GetTRIG (item, pol)

Note:
WE_TRG1OUT, WE_TRG2OUT, and WE_CMNCLKOUT are ignored on the WE400 or WE800. (The
function ends normally, but does not work.)

SetTRIGIN
Description
Sets the destination and polarity of the trigger bus signal entering the TRIG IN terminal located on the

front panel of the measuring station.

Syntax
SetTRIGIN (item As Byte, polarity As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
item (IN) Select the trigger bus destination of the signal entering the TRIG IN terminal.

WE_TRGNONE ' Do not pass signal to the trigger bus.
WE_TRG1 ' Pass the signal to trigger bus “BUSTRG 1. “
WE_TRG2 ' Pass the signal to trigger bus “BUSTRG 2. “

WE_BOTH ' Pass the signal to trigger buses “BUSTRG 1, 2. “
polarity (IN) Select the polarity of the input signal at the TRIG IN terminal

WE_TRGPOS ' Input the signal as is.

WE_TRGNEG ' Input the signal after inverting it.

Example (Visual Basic .Net)
' Pass the trigger signal entering the TRIG IN terminal to trigger buses

' "BUSTRG 1" and "BUSTRG 2" and set the polarity to positive.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.SetTRIGIN (WeControl.WE_BOTH, WeControl.WE_TRGPOS)

Note:
Use this function when you need to maintain compatibility with the APIs for the WE400 and WE800.

Use the SetTRIG function if you are creating a new program.

GetTRIGIN
Description
Gets the destination and polarity of the trigger input signal entering the TRIG IN terminal located on the
front panel of the station.

3.3 WeStation Class

3-24 IM 707741-62E

Syntax
GetTRIGIN (ByRef item As Byte, ByRef polarity As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
item (OUT) TRIG IN terminal’s bus

WE_TRGNONE ' Do not pass signal to the trigger bus.
WE_TRG1 ' Pass the signal to trigger bus “BUSTRG 1.”
WE_TRG2 ' Pass the signal to trigger bus “BUSTRG 2.”

WE_BOTH ' Pass the signal to trigger buses “BUSTRG 1, 2.”
polarity (OUT) Polarity of the polarity of the input signal at the TRIG IN terminal

WE_TRGPOS ' Input the signal as is.

WE_TRGNEG ' Input the signal after inverting it.

Example (Visual Basic .Net)
' Get the destination and polarity of the trigger bus signal

' entering the TRIG IN terminal.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

Dim item As Byte

Dim pol As Byte

ret = Station.GetTRIGIN (item, pol)

Note:
Use this function when you need to maintain compatibility with the APIs for the WE400 and WE800.
Use the GetTRIG function if you are creating a new program.

SetClockBusSource
Description
Sets the time base source that is output to the common clock bus (CMNCLK). The clock can only have

one source.

Syntax
SetClockBusSource (source As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
source (IN) Time base source selection

WE_CMNCLKSRC_NONE ' No source
WE_CMNCLKSRC_TRIGIN ' TRG IN terminal of the front panel

WE_CMNCLKSRC_EXT.IO ' EXT I/O terminal of the front panel
WE_CMNCLKSRC_SLOT0/WE_CMNCLKSRC_SLOT1/
WE_CMNCLKSRC_SLOT2/WE_CMNCLKSRC_SLOT3/

WE_CMNCLKSRC_SLOT4/WE_CMNCLKSRC_SLOT5/
WE_CMNCLKSRC_SLOT6/WE_CMNCLKSRC_SLOT7/
WE_CMNCLKSRC_SLOT8 ' Slot 0 to slot 8

3.3 WeStation Class

3-25IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Example (Visual Basic .Net)
' Set the time base output of the module in slot 1 to be the time

' base source.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.SetClockBusSource (WeControl.WE_CMNCLKSRC_SLOT1)

GetClockBusSource
Description
Gets the time base source that is currently being output to the common clock bus.

Syntax
GetClockBusSource (ByRef source As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
source (OUT) Timebase source

WE_CMNCLKSRC_NONE ' No source
WE_CMNCLKSRC_TRIGIN ' TRG IN terminal of the front panel
WE_CMNCLKSRC_EXT.IO ' EXT I/O terminal of the front panel

WE_CMNCLKSRC_SLOT0/WE_CMNCLKSRC_SLOT1/
WE_CMNCLKSRC_SLOT2/WE_CMNCLKSRC_SLOT3/
WE_CMNCLKSRC_SLOT4/WE_CMNCLKSRC_SLOT5/

WE_CMNCLKSRC_SLOT6/WE_CMNCLKSRC_SLOT7/
WE_CMNCLKSRC_SLOT8 ' Slot 0 to slot 8

Example (Visual Basic .Net)
' Get the time base source setting.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

Dim item As Byte

ret = Station.GetClockBusSource (item)

SetRcvTrigPacket
Description
Sets the stations that will receive the trigger packets that are used for packet triggering. Up to eight
stations can be specified. FireTrigPacket () can be used to generate a trigger packet and send it to the
stations specified here. The trigger packet can also be generated from the specified trigger source

station using SetSndTrigPacket ().

Syntax
SetRcvTrigPacket (num As Short, name() As PacketList) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

3.3 WeStation Class

3-26 IM 707741-62E

Parameters
num (IN) Number of stations to specify (up to 8).
name (IN) Pointer to the station name structure

Structure PacketList ' Station name structure

name As String ' Station name
End Structure

Example (Visual Basic .Net)
' Set station 1 and station 2 to receive the packet triggers.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

Dim packet(WeControl.PacketListNum) As PacketList

packet.list (0).name = "Station 1"

packet.list (1).name = "Station 2"

ret = Station.SetRcvTrigPacket(2, packet)

SetSndTrigPacket
Description
Sets the trigger packet source stations to be used for packet triggering. Up to eight stations can be
specified. When trigger bus “BUSTRG 1” or “BUSTRG 2” becomes active in the source station, the
station generates the trigger packet. The receiving station outputs a trigger signal according to the

trigger source to its own trigger bus “BUSTRG 1” or “BUSTRG 2.”

Syntax
SetSndTrigPacket (num As Integer, name() As PacketList) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
num (IN) Number of stations (up to 8).

name (IN) Pointer to the station name structure
Structure PacketList ' Station name structure

name As String ' Station name

End Structure

Example (Visual Basic .Net)
' Set Station 1 and Station 2 to send packet triggers.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

Dim packet(WeControl.PacketListNum) As PacketList

packet.list (0).name = "Station 1"

packet.list (1).name = "Station 2"

ret = Station.SetSndTrigPacket(2, packet)

SetRcvClockPacket
Description
Sets the time base packet receiving measuring for packet time base. Up to eight receiving measuring

stations can be specified. The measuring station receiving the time base packet generates one pulse
of time base signal on its own clock bus for each packet.

3.3 WeStation Class

3-27IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Syntax
SetRcvClockPacket (num As Integer, name() As PacketList) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
num (IN) Number of stations (up to 8)

name (IN) Pointer to the station name structure
Structure PacketList ' Station name structure

name As String ' Station name

End Structure

Example (Visual Basic .Net)
' Set Station 1 and Station 2 to receive time base packets.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

Dim packet(WeControl.PacketListNum) As PacketList

packet.list (0).name = "Station 1"

packet.list (1).name = "Station 2"

ret = Station.SetRcvClockPacket(2, packet)

SetSndClockPacket
Description
Set the time base packet source for packet time base. The specified measuring station generates time
base packets using its own time base signal. Up to eight time base packet measuring stations can be

specified.

Syntax
SetSndClockgPacket (num As Integer, name() As PacketList) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
num (IN) Number of stations (up to 8)
name (IN) Pointer to the station name structure

Structure PacketList ' Station name structure

name As String ' Station name
End Structure PacketList

Example (Visual Basic .Net)
' Set Station 1 and Station 2 to send time base packets.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

Dim packet(WeControl.PacketListNum) As PacketList

packet.list (0).name = "Station 1"

packet.list (1).name = "Station 2"

ret = Station.SetSndClockPacket(2, packet)

3.3 WeStation Class

3-28 IM 707741-62E

FireTrigPacket
Description
Generates a trigger packet using software for packet triggering. The trigger packets are sent to the
measuring stations specified by SetRcvTrigPacket ().

Syntax
FireTrigPacket (item As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
item (IN) Trigger bus selection. The trigger signal is output to the receiving station trigger

bus specified by this parameter.

WE_TRG1 ' Output to trigger bus “BUSTRG 1.”
WE_TRG2 ' Output to trigger bus “BUSTRG 2.”

Example (Visual Basic .Net)
' Generate a trigger packet for Station 1.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.FireTrigPacket(WeControl.WE_TRG1)

FireClockPacket
Description
Generates time base packets using software for packet time base.

Syntax
FireClockPacket () As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
None

Example (Visual Basic .Net)
' Generates a time base packet.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.FireClockPacket ()

OutputEXTIOEvent
Description
Outputs an event signal using software to the event output signal pin of the EXT I/O terminal located on
the front panel of the measuring station.

Syntax
OutputEXTIOEvent (pulse As Byte) As Short

3.3 WeStation Class

3-29IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
pulse (IN) Output selection

WE_EXTIO_OFF ' OFF

WE_EXTIO_ON ' ON
WE_EXTIO_PULSE ' Pulse

Example (Visual Basic .Net)
' Turn ON the event signal output.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.OutputEXTIOEvent(WeControl.WE_EXTIO_ON)

Note:
If this function is used on the WE500 or WE900, the output of DIO pin 0 of the EXT. I/O is turned ON,

and STATUS LED A illuminates in orange.

SetArmingSource
Description
Sets the arming signal source.

Syntax
SetArmingSource (item As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
item (IN) Arming signal source selection

WE_TRGNONE ' Do not select arming source.
WE_TRG1 ' Set bus trigger signal “BUSTRG 1” as the arming

' signal source.
WE_TRG2 ' Set bus trigger signal “BUSTRG 2” as the arming

' signal source.

Example (Visual Basic .Net)
' Set the bus trigger signal "BUSTRG 1" to the arming signal

' source.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.SetArmingSource (WeControl.WE_TRG1)

GetArmingSource
Description
Get the arming signal source setting.

Syntax
GetArmingSource (ByRef item As Byte) As Short

3.3 WeStation Class

3-30 IM 707741-62E

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
item (OUT) Arming source selection

WE_TRGNONE ' Do not select arming signal source.

WE_TRG1 ' Set bus trigger signal “BUSTRG 1” as the arming
' signal source.

WE_TRG2 ' Set bus trigger signal “BUSTRG 2” as the arming

' signal source.

Example (Visual Basic .Net)
' Gets the arming signal source setting.

Dim item As Byte

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.GetArmingSource (item)

ShowTrigWindow
Description
Displays the trigger source/timebase source/arming setting dialog box that is used to set the module
synchronization function within the measuring station.

Syntax
ShowTrigWindow (ByRef hWnd As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
hWnd (OUT) Trigger source/time base source/arming setting dialog box handle. This can use

to change the display position of the setting dialog box.

Example (Visual Basic .Net)
' Open the trigger source/time base source/arming setting dialog box.

Dim hWnd As Integer

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.ShowTrigWIndow (hWnd)

' Calls the WIN32API and moves the window position to x=520, y=220.

ret = SetWIndowPos (hWnd, 0, 520, 220, 0, 0, 1)

CloseTrigWindow
Description
Closes the trigger source/time base source/arming setting dialog box that is used to set the module
synchronization function within the measuring station.

Syntax
CloseTrigWindow () As Short

3.3 WeStation Class

3-31IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
None

Example (Visual Basic .Net)
' Close the trigger source/time base source/arming setting dialog box.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Station.CloseTrigWindow ()

IsTrigWindow
Description
Queries whether or not the trigger source/time base source/arming setting dialog box, that is used to
set the module synchronization method within the station, is open.

Syntax
IsTrigWindow (ByRef sw As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
sw (OUT) Returns 1 if the trigger source/time base source/arming setting dialog box is

open, 0 if not.

Example (Visual Basic .Net)
' Query whether or not the trigger source/time base source/arming

' setting dialog box is open.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

Dim sw As Byte

ret = Station.IsTrigWIndow (sw)

Start
Description
Starts the operation of the measurement modules in the station collectively.

Syntax
Start () As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Note:
This method only issues the start command to the module. For example, it does not synchronize to the
termination of the acquisition on the acquisition module. If you need such termination process, use

IsRun in the module class, which polls (monitors) the end of the execution.

3.3 WeStation Class

3-32 IM 707741-62E

Parameters
None

Example (Visual Basic .Net)
' Start WE7111.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

ret = Station.Start()

Stop
Description
Stops the operation of the measurement modules in the station collectively.

Syntax
Stop () As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
None

Example (Visual Basic .Net)
' Stop WE7111.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

ret = Station.Start ()

••••••

ret = Station.Stop ()

3.3 WeStation Class

3-33IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

3.4 WeModule Class

OpenModule
Description
Opens the module for controlling the module.

Syntax
OpenModule (Station As WeStation, name As String, connection As Short) As Short

OpenModule (hSt As Integer, name As String, connection As Short) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
Station (IN) Station class

hSt (IN) Station handle
name (IN) Module’s product name [:number] or slot number

Using product name eliminates the need to know the slot number or position of

the module in the station. The number inside the brackets indicates the position
of the module counting the modules of the same type starting from the left most
module of the same type (1 origin). (See the example below on how to specify

the module’s product name.) The brackets () can be omitted in which case it is
considered to be [:1]. To specify the 4-CH, 100 kS/s Isolated Digitizer Module
WE7272, use “WE7271.”

connection (IN) The number of modules you wish to link. Specify 1 if you do not wish to link the

modules.

Note:
By opening, this method saves within the class the module handle used to identify the module.
The module handle is stored to variable member hMo.
By specifying the name parameter with the model’s product name instead of the slot number, the

program will be independent of the actual slot positions of the modules. Therefore, using the module’s
product name is encouraged. If the station is turned OFF, the module handles that have been obtained
remains effective. This means that the same module handles can be used to control the modules

when the measuring station is turned back ON. However, if the modules are switched or moved to
different slot positions while the power is OFF, the behavior afterwards is not guaranteed.

Example of specifying the module’s product name

WE7111 WE7111 WE7111 WE7121 WE7131 WE7121

WE7111: 1 WE7111: 2 WE7111: 3 WE7121 WE7131 WE7121: 2

Attempting to get the module handle of a child module that is linked
to an opened module results in an error. Opening a child module that
is linked to an unopened module clears the link.

Product name

3-34 IM 707741-62E

Example (Visual Basic .Net)
• Open the WE7111 module with a link number of 2 (when using class designation)
' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Module1.OpenModule (Station, "WE7111:1", 2)

• Open the WE7111 module with a link number of 2 (when using handle designation)
' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Module1.OpenModule (Station.hSt, "WE7111:1", 2)

• Open the module in slot 2 with a link number of 1
(When the "WE7111: 1" is not opened.)

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

ret = Module1.OpenModule (Station, "2", 1)

LinkModule
Description
Gets the module link handle. The module link handle can be used to the control multiple modules
simultaneously.

Syntax
LinkModule (num As Short, MoList() As WeModule) As Short

LinkModule (num As Short, hMoList() As Integer) As Short
LinkModule (num As Short, ByRef hMoList As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful. Attempting to get a link handle for
modules of a different type results in an error.

Parameters
num (IN) The number of modules to link
MoList (IN) An array of the module classes to be linked. The number of module handles in

the array must equal the num parameter.

hMoList (OUT) An array of the module classes of the modules to be linked. The number of
module handles in the array must equal the num parameter.

Note:
By opening, this method saves within the class the module handle used to identify the module.
The module handle is stored to variable member hMo.

3.4 WeModule Class

3-35IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Example (Visual Basic .Net)
Module1, Module2, and LinkModules are WeModule Class entities.

' Get the module link handle of two modules, then set the offset

' voltage to 1.234 V.

Dim MoList(1) As WeModule

' Get the station handle of the station named "Station 1"

ret = Station.OpenStation ("Station1")

' Open the module at slot 2 with a link number of 1.

ret = Module1.OpenModule (Station, "2", 1)

' Open the module at slot 4 with a link number of 1.

ret = Module2.OpenModule (Station, "4", 1)

MoList(0) = Module1

MoList(1) = Module2

ret = LinkModule.LinkModule (2, MoList)

ret = LinkModule.SetControl ("Offset", "1.234")

CloseHandle
Description
Closes the module.

Syntax
CloseHandle () As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
None

Note:
This method releases the module handle or the module link handle internally.

Example (Visual Basic .Net)
' Release the module handle of the module named "WE7111."

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the module at slot 2 with a link number of 1.

ret = Module1.OpenModule (Station, "WE7111:1", 1)

ret = Module1.CloseHandle ()

GetModuleInfo
Description
Gets the module information.

Syntax
GetModuleInfo (no As Short, ByRef info As ModuleInfoEx) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

3.4 WeModule Class

3-36 IM 707741-62E

Parameters
no (IN) Link position of the module. The relative position counted starting from the

parent module (0 origin). Specify 0 if the module is not linked.
info (OUT) Pointer to the module extended information structure that is returned

Structure ModuleInfoEx ' Module extended Information
mdInfo As ModuleInfo ' Module information
maker As String* MaxMakerName ' Name of the manufacturer

productName As String* MaxProductName ' Product name
End Structure

Note:
When the module is operating under a link, the module handle that was used to open the module is
that of the parent module. Thus, the no parameter is necessary to specify the child module.

Example (Visual Basic .Net)
' Get the parent module information of the linked modules.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

Dim inf As ModuleInfoEx

ret = Module1.GetModuleInfo (0, inf)

InitSetup
Description
Resets the current module’s setup data to the default values.

Syntax
InitSetup (no As Short) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
no (IN) Link position of the module. The relative position counted from the parent

module (0 origin). Specify 0 if the module is not linked.

Example (Visual Basic .Net)
' Update the setup data of the parent module with the default values.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

ret = Module1.InitSetup (0)

InitPreset
Description
Updates the preset values of the module with the default values.

Syntax
InitPreset (no As Short) As Short

3.4 WeModule Class

3-37IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
no (IN) Link position of the module. The relative position counted starting from the

parent module (0 origin). Specify 0 if the module is not linked.

Example (Visual Basic .Net)
' Update the preset values of the parent module with default values.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

ret = Module1.InitPreset (0)

Note:
Executing this command overwrites the flash ROM of the measuring station. There is a limitation on the

number of times the flash ROM can be overwritten (approx. 100,000 times). Therefore, minimize the
execution of this command.

SaveSetup
Description
Saves the current setup data of the module or updates the preset values. When saving to a file, the file

is saved with a file extension “.set.”

Syntax
SaveSetup (no As Short, filename As String) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
no (IN) Link position of the module. The relative position counted starting from the

parent module (0 origin). Specify 0 if the module is not linked.
filename (IN) File name. Specify the file without the file extension “.set.” Specifying " " for the

file name updates the preset values.

Example (Visual Basic .Net)
' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

' Save the current setup data to the file, c:\param.set.

ret = Module1.SaveSetup (0, "c:\param")

' Update the preset values with the current setup data.

ret = Module1.SaveSetup (0, "")

Note:
Executing this command when only " " is specified for the file name overwrites the flash ROM of the
measuring station. There is a limitation on the number of times the flash ROM can be overwritten

(approx. 100,000 times). Therefore, minimize the execution of this command.

3.4 WeModule Class

3-38 IM 707741-62E

LoadSetup
Description
Updates the current setup data of the station or module using the setup data file or preset values.

Syntax
LoadSetup (ByVal no As Short, ByVal filename As String) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
no (IN) Link position of the module. The relative position counted starting from the

parent module (0 origin). Specify 0 if the module is not linked.
filename (IN) File name. Specify the file without the file extension “.set.” Specifying " " for the

file name updates the current settings using preset values.

Example (Visual Basic .Net)
' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

' Update the current setup data with the file, c:\param.set.

ret = Module1.LoadSetup (0, "c:\param")

' Update the current setup data with the preset values.

ret = Module1.LoadSetup (0, "")

CopySetup
Description
Copies the current setup data of the module to a specified module of the same type.

Syntax
CopySetup (DesMo As WeModule) As Short
CopySetup (DesMo As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful. If the module type of the copy source

differs from that of the copy destination, an error is returned.

Parameters
DesMo (IN) Module handle of the copy source
hDesMo (IN) Module handle of the copy destination

Example (Visual Basic .Net)
' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the first WE7111 module with a link number of 1.

ret = Module1.OpenModule (Station, "WE7111:1", 1)

' Open the second WE7111 module with a link number of 1.

ret = Module2.OpenModule (Station, "WE7111:2", 1)

' Copy the setup data of Module1 to Module2.

ret = Module1.CopySetup (Module2)

3.4 WeModule Class

3-39IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

CopyChSetup
Description
Copies the current setup data of a channel of a module to the specified channel. This function is valid
only when the modules are linked.

Syntax
CopyChSetup (srcCh As Short, desCh As Short) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
srcCh (IN) Channel number of the copy source. One origin.
desCh (IN) Channel number of the copy destination. One origin.

Note:
The slot number here signifies the relative slot number when the modules are linked.

Example (Visual Basic .Net)
' Copy the setup data of the WE7111 module at channel 1 (slot 1) to the

' module at channel 3 (slot 3).

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the first WE7111 module with a link number of 3.

ret = Module1.OpenModule (Station, "WE7111:1", 3)

ret = Module1.CopyChSetup (1, 3)

CopyChSetupEx
Description
Copies the current setup data of a channel of a module to the specified channel. This function can be
used even when the modules are not linked.

Syntax
CopyChSetupEx (srcCh As Integer, desStartCh As Integer, desEndCh As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
srcCh (IN) Channel number of the copy source. One origin.
desStartCh (IN) Channel number of the copy destination. One origin.

desEndCh (IN) Last channel number of the copy destination. One origin.

Note:
The channel number here signifies the sequence number counted from the parent module when
modules are linked.

3.4 WeModule Class

3-40 IM 707741-62E

Example (Visual Basic .Net)
' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the first WE7251 module with a link number of 3.

ret = Module1.OpenModule (Station, "WE7251:1", 3)

' Copy the setup data of CH1 to the destination channels of CH2 through

' CH30.

ret = Module1.CopyChSetupEx (1, 2, 30)

SetControl
Description
Sets the individual control Parameters of a module.

Syntax
SetControl (command As String, param As Object) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
command (IN) ASCII command name that is defined for each module. For details, see the

command table of each measurement module.

param (IN) Parameter dependent on the command

Note:
ASCII commands are defined for each module. For details on the ASCII commands of each module,

see chapter 8, “ASCII Commands” in the WE Control API User’s Manual (IM 707741-61E).

Example (Visual Basic .Net)
' Set the offset value of the WE7111 module to 1.234 V.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the first WE7111 module with a link number of 3.

ret = Module1.OpenModule (Station, "WE7111:1", 3)

ret = Module1.SetControl ("Offset", "1.234")

GetControl
Description
Gets the current values of the individual control Parameters of the module.

Syntax
GetControl (command As String, ByRef param As Object) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

3.4 WeModule Class

3-41IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Parameters
command (IN) ASCII command name that is defined for each module. For details, see the

command table of each measurement module.
param (OUT) Parameter dependent on the command. In most cases, string data is returned.

(There are exceptions.)

Note:
ASCII commands are defined for each module. For details on the ASCII commands of each module,
see chapter 8, “ASCII Commands” in the WE Control API User’s Manual (IM 707741-61E).

Example (Visual Basic .Net)
' Get the offset value of the WE7111 module.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the first WE7111 module with a link number of 3.

ret = Module1.OpenModule (Station, "WE7111:1", 3)

' Variable used to retrieve data

Dim value As Object

ret = Module1.GetControl ("Offset", value)

SetControlEx
Description
Sets the individual control Parameters of the module. You can set the control parameters by specifying
the data type.

Syntax
SetControlEx (command As String) As Short

SetControlEx (command As String, ByRef param As Byte) As Short
SetControlEx (command As String, size As Integer, ByRef param() As Byte) As Short
SetControlEx (command As String, ByRef param As SByte) As Short

SetControlEx (command As String, size As Integer, ByRef param() As SByte) As Short
SetControlEx (command As String, ByRef param As UInt16) As Short
SetControlEx (command As String, size As Integer, ByRef param() As UInt16) As Short

SetControlEx (command As String, ByRef param As Short) As Short
SetControlEx (command As String, size As Integer, ByRef param() As Short) As Short
SetControlEx (command As String, ByRef param As UInt32) As Short

SetControlEx (command As String, size As Integer, ByRef param() As UInt32) As Short
SetControlEx (command As String, ByRef param As Integer) As Short
SetControlEx (command As String, size As Integer, ByRef param() As Integer) As Short

SetControlEx (command As String, ByRef param As Single) As Short
SetControlEx (command As String, size As Integer, ByRef param() As Single) As Short
SetControlEx (command As String, ByRef param As Double) As Short

SetControlEx (command As String, size As Integer, ByRef param() As Double) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
command (IN) ASCII command name that is defined for each module

size (IN) Number of data
param (IN) Data pointer

3.4 WeModule Class

3-42 IM 707741-62E

Example (Visual Basic .Net)
' Set the offset value of the WE7111 module to 1.24 V.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the first WE7111 module with a link number of 3.

ret = Module1.OpenModule (Station, "WE7111:1", 3)

Dim data As Double

data = 1.24

ret = Module1.SetControlEx ("Offset", data)

GetControlEx
Description
Gets the current values of the individual control Parameters of the module. You can get the control

parameters by specifying the data type.

Syntax
GetControlEx (command As String, ByRef param As Byte) As Short
GetControlEx (command As String, size as Integer, ByRef param() As Byte) As Short

GetControlEx (command As String, ByRef param As SByte) As Short
GetControlEx (command As String, size as Integer, ByRef param() As SByte) As Short
GetControlEx (command As String, ByRef param As UInt16) As Short

GetControlEx (command As String, size as Integer, ByRef param() As UInt16) As Short
GetControlEx (command As String, ByRef param As Short) As Short
GetControlEx (command As String, size as Integer, ByRef param() As Short) As Short

GetControlEx (command As String, ByRef param As UInt32) As Short
GetControlEx (command As String, size as Integer, ByRef param() As UInt32) As Short
GetControlEx (command As String, ByRef param As Integer) As Short
GetControlEx (command As String, size as Integer, ByRef param() As Integer) As Short

GetControlEx (command As String, ByRef param As Single) As Short
GetControlEx (command As String, size as Integer, ByRef param() As Single) As Short
GetControlEx (command As String, ByRef param As Double) As Short

GetControlEx (command As String, size as Integer, ByRef param() As Double) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
command (IN) ASCII command name that is defined for each module

size (IN) Number of data points to be retrieved
param (OUT) Data pointer

Example (Visual Basic .Net)
' Get the offset value of the WE7111 module.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the first WE7111 module with a link number of 3.

ret = Module1.OpenModule (Station, "WE7111:1", 3)

Dim data As Double

ret = Module1.GetControlEx ("Offset", data)

3.4 WeModule Class

3-43IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

SetQueryControl
Description
Sets the control parameter using the module handle and command, and then gets the current value of
the control parameter.

Syntax
SetQueryControl (command As String, paramNum As Integer,ByRef setParamAs SByte, rtype As

Short, ByRef getParam As Object) As Short
SetQueryControl (command As String, paramNum As Integer,ByRef setParam() As SByte, rtype As
Short, ByRef getParam As Object) As Short

SetQueryControl (command As String, paramNum As Integer,ByRef setParamAs Byte, rtype As Short,
ByRef getParam As Object) As Short
SetQueryControl (command As String, paramNum As Integer,ByRef setParam() As Byte, rtype As

Short, ByRef getParam As Object) As Short
SetQueryControl (command As String, paramNum As Integer,ByRef setParamAs Short, rtype As Short,
ByRef getParam As Object) As Short

SetQueryControl (command As String, paramNum As Integer,ByRef setParam() As Short, rtype As
Short, ByRef getParam As Object) As Short
SetQueryControl (command As String, paramNum As Integer,ByRef setParamAs UInt16, rtype As

Short, ByRef getParam As Object) As Short
SetQueryControl (command As String, paramNum As Integer,ByRef setParam() As UInt16, rtype As
Short, ByRef getParam As Object) As Short

SetQueryControl (command As String, paramNum As Integer,ByRef setParamAs Integer, rtype As
Short, ByRef getParam As Object) As Short
SetQueryControl (command As String, paramNum As Integer,ByRef setParam() As Integer, rtype As

Short, ByRef getParam As Object) As Short
SetQueryControl (command As String, paramNum As Integer,ByRef setParamAs UInt32, rtype As
Short, ByRef getParam As Object) As Short

SetQueryControl (command As String, paramNum As Integer,ByRef setParam() As UInt32, rtype As
Short, ByRef getParam As Object) As Short
SetQueryControl (command As String, paramNum As Integer,ByRef setParamAs Single, rtype As

Short, ByRef getParam As Object) As Short
SetQueryControl (command As String, paramNum As Integer,ByRef setParam() As Single, rtype As
Short, ByRef getParam As Object) As Short

SetQueryControl (command As String, paramNum As Integer,ByRef setParamAs Double, rtype As
Short, ByRef getParam As Object) As Short
SetQueryControl (command As String, paramNum As Integer,ByRef setParam() As Double, rtype As

Short, ByRef getParam As Object) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
command (IN) ASCII command name that is defined for each module

paramNum (IN) Number of data to send
setParam (IN) Pointer to the data to send

3.4 WeModule Class

3-44 IM 707741-62E

rtype (IN) Data type of the data to receive
The following symbols are defined:

WE_NULL ' No parameter
WE_UBYTE ' 8-bit unsigned integer
WE_SBYTE ' 8-bit signed integer

WE_UWORD ' 16-bit unsigned integer
WE_SWORD ' 16-bit signed integer
WE_ULONG ' 32-bit unsigned integer

WE_SLONG ' 32-bit signed integer
WE_FLOAT ' 32-bit real number
WE_DOUBLE ' 64-bit real number

getParam (OUT) Pointer to the data to receive

Note:
Use this class only with the WE7021 module.

Example (Visual Basic .Net)
' Using the WE7021 module, retrieve the block data from the

' connected device.

Dim pBuf As Object

Dim rSize As Long

rSize = 2002

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the first WE7021 module with a link number of 1.

ret = Module1.OpenModule (Station, "WE7021", 1)

ret = Module1.SetQueryControl ("DATA", 1, rSize, WeControl.WE_UWORD, pBuf)

SetScaleInfo
Description
Sets scale conversion information to the measurement module. This function is equivalent to the
settings in the convert scale dialog box. The information is stored to the module through operations

such as update preset.

Syntax
SetScaleInfo (ch As Integer, LSInfoNum As Integer, LSInfo() As LinearScaleInfo) As Short

Parameters
ch (IN) Channel number

One origin. If the modules are linked, it is the link number. -1 represents all
channels.

LSInfoNum (IN) Number of LinearScaleInfo

LSInfo (IN) Scale conversion table information
If -1 is specified for ch, the number of LSInfo Parameters that needs to be
specified is equal to the number of channels.

Structure LinearScaleInfo ' Whether or not to enable scaling.
scaling As Integer ' (1: enable scaling, 0: disable scaling)
rsrv As Integer ' Reserved.

a As Double ' The value a of scaling parameter ax+b.
b As Double ' The value b of scaling parameter ax+b.
label As String ' Label name (32 characters).

unit As String ' Name of the unit (16 characters).
End Structure

3.4 WeModule Class

3-45IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Example (Visual Basic .Net)
' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the first WE7275 module with a link number of 1.

ret = Module1.OpenModule (Station, "WE7275:1", 1)

Dim info(WeControl.LinearScaleInfoNum-1) As LinearScaleInfo

info.list(0).scaling = 1

info.list(0).a = 1.0

info.list(0).b = 0.0

info.list(0).label = "CH1" + Chr$(0)

info.list(0).unit = "unit1" + Chr$(0)

info.list(1).scaling = 1

info.list(1).a = 2.0

info.list(1).b = 0.0

info.list(1).label = "CH2" + Chr$(0)

info.list(1).unit = "unit2" + Chr$(0)

' Set the scale information of all channels (2 channels).

ret = Module1.SetScaleInfo (-1, WeControl.LinearScaleInfoNum, info)

GetScaleInfo
Description
Gets scale conversion information of the measurement module.

Syntax
GetScaleInfo (ch As Integer, LsInfoNum As Integer LSInfo() As LinearScaleInfo) As Short

Parameters
ch (IN) Channel number

One origin. If the modules are linked, it is the link number. -1 represents all
channels.

LSInfoNum (IN) Number of LinearScaleInfo
LSInfo (IN) Scale conversion table information

If -1 is specified for ch, the number of info Parameters that needs to be specified

is equal to the number of channels.
Structure LinearScaleInfo ' Whether or not to enable scaling.

scaling As Long ' (1: enable scaling, 0: disable scaling)

rsrv As Long ' Reserved.
a As Double ' The value a of scaling parameter ax+b.
b As Double ' The value b of scaling parameter ax+b.

label As String ' Label name (32 characters).
unit As String ' Name of the unit (16 characters).

End Structure

Example (Visual Basic .Net)
' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the first WE7275 module with a link number of 1.

ret = Module1.OpenModule (Station.hSt, "WE7275:1", 1)

Dim info(WeControl.LinearScaleInfoNum-1) As LinearScaleInfo

' Queries the scale information of all channels (2 channels).

ret = Module1.GetScaleInfo (-1, WeControl.LinearScaleInfoNum, info)

3.4 WeModule Class

3-46 IM 707741-62E

SetModuleBus
Description
Sets the trigger source/time base source (sampling clock) and the input/output setting of the arming
signal of the module. If a module is specified that does not have a trigger source, time base source, or
an arming signal input/output function, the settings are discarded.

Syntax
SetModuleBus (InItem As Byte, OutItem As Byte, InClock As Byte, ArmItem As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
InItem (IN) Trigger input selection

WE_TRGNONE ' Do not use the bus trigger signal.
WE_TRG1 ' Use bus trigger signal “BUSTRG 1.”
WE_TRG2 ' Use bus trigger signal “BUSTRG 2.”

OutItem (IN) Trigger output selection
WE_TRGNONE ' Do not output to the trigger bus signal.
WE_TRG1 ' Output to bus trigger signal “BUSTRG 1.”

WE_TRG2 ' Output to bus trigger signal “BUSTRG 2.”
WE_BOTH ' Output to both bus trigger signals “BUSTRG 1, 2.”

InClock (IN) Sampling clock input selection

WE_CMNCLKNONE ' Do not use the bus clock signal.
WE_CMNCLK ' Use the sampling clock signal.

ArmItem (IN) Arming signal input selection

WE_ARMNONE ' Do not use arming signal.
WE_ARM ' Use arming signal.

Example (Visual Basic .Net)
' Use bus trigger signal "BUSTRG 2", output bus trigger signal

' "BUSTRG 1" and "BUSTRG 2", do not use the sampling clock signal, use

' arming signal.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the first WE7111 module with a link number of 3.

ret = Module1.OpenModule (Station, "WE7111:1", 3)

ret = Module1.SetModuleBus (WeControl.WE_TRG2, WeControl.WE_BOTH,

WeControl.WE_CMNCLKNONE,WeControl.WE_ARM)

GetModuleBus
Description
Gets the trigger source/time base source (sampling clock) and the input/output setting of the arming
signal of the module. If a module is specified that does not have a trigger source, time base source, or

an arming signal input/output function, a “0” is returned for each setting.

Syntax
GetModuleBus (ByRef InItem As Byte, ByRef OutItem As Byte, ByRef InClock As Byte, By Ref ArmItem
As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

3.4 WeModule Class

3-47IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Parameters
InItem (OUT) Trigger input setting

WE_TRGNONE ' Do not use the bus trigger signal.
WE_TRG1 ' Use bus trigger signal “BUSTRG 1.”

WE_TRG2 ' Use bus trigger signal “BUSTRG 2.”
OutItem (OUT) Trigger output setting

WE_TRGNONE ' Do not output to the trigger bus signal.

WE_TRG1 ' Output to bus trigger signal “BUSTRG 1.”
WE_TRG2 ' Output to bus trigger signal “BUSTRG 1.”
WE_BOTH ' Output to both bus trigger signals “BUSTRG 1, 2.”

InClock (OUT) Sampling clock input setting
WE_CMNCLKNONE ' Do not use the sampling clock signal.
WE_CMNCLK ' Use the sampling clock signal.

ArmItem (OUT) Arming signal input setting
WE_ARMNONE ' Do not use arming signal.
WE_ARM ' Use arming signal.

Example (Visual Basic .Net)
' Gets the trigger/time base source and arming settings of the module.

Dim InItem As Byte

Dim OutItem As Byte

Dim InClock As Byte

Dim ArmItem As Byte

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the first WE7111 module with a link number of 3.

ret = Module1.OpenModule (Station, "WE7111:1", 3)

ret = Module1.GetModuleBus (InItem, OutItem, InClock, ArmItem)

ShowModuleWindow
Description
Displays the module GUI Window for controlling the module.

Syntax
ShowModuleWindow (ByRef hWnd As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
hWnd (OUT) GUI window handle. This method is available to use when changing the position

of the GUI window.

Note:
The operation panel that is displayed using this method can be used only to make setting changes. It
cannot be used to start/stop the module. In addition, for operation panels that display measured values

(instantaneous values), the displayed values are not updated.

3.4 WeModule Class

3-48 IM 707741-62E

Example (Visual Basic .Net)
' Open the WE7111 GUI panel.

Dim hWnd As Integer

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

ret = Module1.ShowModuleWindow (hWnd)

' Move the window position to x = 520 and y = 220.

ret = SetWindowPos (hWnd, 0, 520, 220, 0, 0, 1)

CloseModuleWindow
Description
Closes the module GUI Window used to control the module.

Syntax
CloseModuleWindow () As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
None

Example (Visual Basic .Net)
' Close the WE7111 GUI panel.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

ret = Module1.CloseModuleWindow ()

IsModuleWindow
Description
Queries whether or not the module GUI window for controlling the module is open.

Syntax
IsModuleWindow (ByRef sw As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
sw (OUT) Returns 1 if the module window is open, 0 if it is not.

3.4 WeModule Class

3-49IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Example (Visual Basic .Net)
' Query whether or not the WE7111 GUI panel is open.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

Dim sw As Byte

ret = Module1.IsModuleWIndow (sw)

ShowLinearScaleWindow
Description
Displays the convert scale dialog box.

Syntax
ShowLinearScaleWindow (ByRef hWnd As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
hWnd (OUT) Convert scale dialog box handle

Used when changing the position of the dialog box, for example.

Example (Visual Basic .Net)
' Display the convert scale dialog box for the WE7251 module.

Dim hWnd As Integer

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the WE7251 module with a link number of 2.

ret = Module1.OpenModule (Station, "WE7251:1", 2)

ret = Module1.ShowLinearScaleWindow (hWnd)

' Calls the WIN32API and moves the window position to x = 520, y = 220.

ret = SetWindowPos(hWnd, 0, 520, 220, 0, 0, 1)

CloseLinearScaleWindow
Description
Closes the convert scale dialog box.

Syntax
CloseLinearScaleWindow () As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
None

3.4 WeModule Class

3-50 IM 707741-62E

Example (Visual Basic .Net)
' Close the convert scale dialog box for the WE7251 module.

Dim hWnd As Integer

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the WE7251 module with a link number of 2.

ret = Module1.OpenModule (Station, "WE7251:1", 2)

ret = Module1.ShowLinearScaleWindow (hWnd)

ret = Module1.CloseLinearScaleWindow ()

IsLinearScaleWindow
Description
Queries whether or not the convert scale dialog box is open.

Syntax
IsLinearScaleWindow (ByRef sw As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
sw (OUT) Returns 1 if the module operation panel is displayed, 0 if it is not.

Example (Visual Basic .Net)
' Query whether or not the convert scale dialog box for the WE7251 module

' is open.

Dim hWnd As Integer

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the WE7251 module with a link number of 2.

ret = Module1.OpenModule (Station, "WE7251:1", 2)

Dim sw As Byte

ret =Module1.IsLinearScaleWindow(sw)

Start
Description
Starts the operation of the measurement module.

Syntax
Start () As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
None

3.4 WeModule Class

3-51IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Note:
This method only issues the start command to a module. For example,it does not carry out operations

such as synchronize to the end of an acquisition on the acquisition module. If you need such
termination process, use the IsRun method, which polls (monitors) the end of the execution.

Example (Visual Basic .Net)
' Start WE7111.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

ret = Module1.Start ()

Stop
Description
Stops the operation of the measurement module.

Syntax
Stop () As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
None

Example (Visual Basic .Net)
' Stop WE7111.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

ret = Module1.Start ()

••••••

ret = Module1.Stop ()

StartEx
Description
Starts the operation of the measurement module. This function can be used to simply issue the start
command (same as Start ()) or or have the module notify the end of the acquisition with an event by

specifying the operation mode. In the event notification mode, event notification for each block and
event notification according to the logic block during the free run mode are possible.

Syntax
StartEx (blockLen As Integer, blockCount As Byte, acqCount As Integer, mode As Short) As Short

Old interface
StartEx (blockLen As Integer, blockCount As Byte, acqCount As Integer, mode As Short, ByRef

evHandle As Integer) As Short

3.4 WeModule Class

3-52 IM 707741-62E

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
blockLen (IN) Number of data points per block (record length)
blockCount (IN) Number of memory partitions (blocks)

Number of blocks can only be specified in powers of two’s.
Make sure the following equation is satisfied: “blockLen* (2 to the blockCount
power) ≤ Acquisition memory length in the module.”

acqCount (IN) Number of acquisitions. The data acquisition operation terminates after
acquiring the amount of data specified by this number. If 0 is specified, the
operation continues until the user issues the stop command.

mode (IN) Acuquisition operation mode
WE_ACQ_NO_EVENT ' Do not generate events
WE_ACQ_BLOCK_EVENT ' Generate events for each block

WE_ACQ_STOP_EVENT ' Generate events after acquiring all
' blocks and the operation stops

evHandle (OUT) Even handle (old interface)

Also used in StopEx(). (The new interface stores the event handle within the
class and releases the event using the value in StopEx().)

Note:
acqCount is ignored when WE_ACQ_BLOCK_EVENT is specified. In other words, data acquisition
operation continues until the stop command is issued. When the acquisition mode is set to free run,

blockCount is ignored.

Example (Visual Basic .Net)
• Example in which data are read using the event notification in the trigger mode on the

WE7251
' Initialization procedure

' Initialize

ret = Comm.Init(WeEvent1.hwnd, "Optical devicename=we7036", WE_CONTROLLER)

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation("Station1")

' Turn ON Station 1.

ret = Station.Power(WeControl.WE_ON)

' Open module WE7251 with a link number of 1.

ret = Module1.OpenModule(Station, "WE7251:1", 1)

' Enable aquisition on CH1.

ret = Module1.SetControl("CH1:On", "On")

' Set the aquisition mode to "Triggered."

ret = Module1.SetControl("Acquisition Mode", "Triggered")

••••••

3.4 WeModule Class

3-53IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

' Start procedure

' Set the sampling interval to 0.001 s.

ret = Module1.SetControl("Sampling Interval", "0.001")

' Set the number of memory partitions to 2 (2 to the 1st power)

' and the number of measurements to 2.

' Request that the WeEvent be issued when two blocks of data

' (1000 points) are acquired.

' Therefore, an event is notified after 2 s (sampling interval of

' 0.001 x block length of 1000 x number of measurments of 2).

' Start measurement.

ret = Module1.StartEx(1000, 1, 2, WeControl.WE_ACQ_STOP_EVENT)

 ••••••

' WeEvent handler

Dim recSize As Long

Dim buf() As Double

Dim sparam As ScalingParam

If ev = WeContorol.WE_EV_MEASEND Then ' If it is an acquisition stop event,

sparam.a = 1

sparam.b = 0

recSize = 1000*8

' Allocate a buffer for 1000 points.

ReDim buf(999) As Double

' Read the data from CH1 block 0.

' Read the voltage.

ret = Module1.GetScaleData(1, 0, sparam, recSize, WeControl.WE_DOUBLE,

buf(0))

' Display the data of block 0 or make an analysis.

••••••

' Read the data from CH1 block 1.

' Read the voltage.

ret = Module1.GetScaleData(1, 1, sparam, recSize, WeControl.WE_DOUBLE,

buf(0))

••••••

End If

' Stop procedure

' Stops the measurement and releases the event.

ret = Module1.StopEx()

••••••

• Example in which data are read using the event notification in the free run mode on the WE7251
' Initialization procedure

' Initialize

ret = Comm.Init(WeEvent1.hwnd, "Optical devicename=we7036", WE_CONTROLLER)

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation("Station1")

' Turn ON Station 1.

ret = Station.Power(WeControl.WE_ON)

' Open module WE7251 with a link number of 1.

ret = Module1.OpenModule(Station,"WE7251:1", 1)

' Enable aquisition on CH1.

ret = Module1.SetControl("CH1:On", "On")

' Set the aquisition mode to "Free Run."

ret = Module1.SetControl("Acquisition Mode", "Free Run")

••••••

3.4 WeModule Class

3-54 IM 707741-62E

' Start procedure

' Set the sampling interval to 0.01 s.

ret = Module1.SetControl("Sampling Interval", "0.01")

' Request that the WeBlock event be issued when 100 points of

' data are acquired.

' Therefore, an event is notified every 1 s (sampling interval of

' 0.01 x block length of 100).

' In the free run mode, the number of blocks is ignored and the

' number of acquisitions is set to infinity.

ret = Module1.StartEx(100, 0, 0, WeControl.WE_ACQ_BLOCK_EVENT)

' Start measurement.

••••••

' WeBlock handler

Dim recSize As Long

Dim buf () As Double

Dim sparam As ScalingParam

sparam.a = 1

sparam.b = 0

' Since only the CH1 data are read, the buffer size is 100 points

' x 8 bytes (Double type).

recSize = 100*8

ReDim buf (00) As Double ' Allocate a buffer for 100 points.

' Read the voltage.

ret = Module1.GetScaleData(1, blockNo, sparam, recSize, WeControl.WE_DOUBLE,

buf(0))

' Display the data or make an analysis.

••••••

' Stop procedure

' Stops the measurement and releases the event.

ret = Module1.StopEx()

••••••

StopEx
Description
Stops the operation of the measurement module. Use this method to stop the operation only if the
acquisition was started with the StartEx method.

Syntax
StopEx () As Short

Old interface
StopEx (evHandle As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
None
Be sure to execute StopEx(), if you execute StartEx().

old interface
evHandle (IN) Even handle to be released

Specify the event handle obtained when StartEx() was executed.

3.4 WeModule Class

3-55IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Example (Visual Basic .Net)
ret = Module1.StartEx(1000, 0, 0, WE_ACQ_BLOCK_EVENT)

••••••

ret = Module1.StopEx()

IsRun
Description
Queries the execution state of the measurement module (run/stop).

Syntax
IsRun (ByRef status As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
status (OUT) Run state (WE_RUN) or stop state (WE_STOP)

Example (Visual Basic .Net)
' Queries the execution state of WE7111.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

ret = Module1.Start ()

Dim status As Byte

Do

ret = Module1.IsRun (status)

If status=0 Then

Exit Do

End If

Loop

GetAcqDataInfoEx
Description
Reads the acquisition data information of the measurement module.

Syntax
GetAcqDataInfo(ch As Short, blockNo As Integer, info() As AcqDataInfoEx2, ByRef infoNum As

Short) As Short

Old interface
GetAcqDataInfo(ch As Short, blockNo As Integer, ByRef info As AcqDataInfo, ByRef infoNum As
Short) As Short
GetAcqDataInfoEx(ch As Short, blockNo As Integer, ByRef info As AcqDataInfoEx, ByRef infoNum
As Short) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.
An error occurs if you specify a block number that exceeds the valid number of data blocks.

3.4 WeModule Class

3-56 IM 707741-62E

Parameters
ch (IN) Channel number.

One origin. If the modules are linked, it is the link number. -1 represents all
channels.

blockNo (IN) Block number
For details, see section 4.2, “Specifying the Data Block that You Wish to Retrieve”
in the WE Control API User’s Manual (IM 707741-61E).

info (OUT) Data information pointer
Structure AcqDataInfoEx2

channel As ushort // Channel number (1 or greater)

dataType As ushort // Acquisition data type
blockNum As ushort // Number of valid blocks
startBit As ushort // Valid bit start position for integers

// (bit0 orgreater)
effectiveBit As ushort // Valid bit length for integers (0 specifies up to

// the highest bit)

trigActive As ushort // Trigger active (0/1)
record As uint // Record length (number of samples)
recordLen As uint // Display record length

trigPosition As uint // Trigger position
// (record position of the 0 base point)

interval As double // Sampling interval (s)

vResolution As double // Scaling factor for converting physical values
vOffset As double // Offset for converting physical values
trigLevel As double // Trigger level (the order of the physical value)

trigWidth As double // Trigger width (the order of the physical value)
plusOverData As double // Positive overrange value

// (the order of the acquisition data)

minusOverData As double // Negative overrange value
// (the order of the acquisition data)

nonData As double // Illegal value (the order of the acquisition data)

dispMaxData As double // Maximum display value
// (the order of the acquisition data)

dispMinData As double // Minimum display value

// (the order of the acquisition data)
date As string // Date of acquisition
time As string // Time of acquisition

vUnit As string // Physical value unit
xUnit As string // Horizontal axis unit

info (OUT) Data information pointer (for old interface)
Structure AcqDataInfo

channel As ushort // Channel number(1 or greater)

dataType As ushort // Acquisition data type
blockNum As ushort // Number of valid blocks
startBit As ushort // Valid bit start position for integers

// (bit0 or greater)
effectiveBit As ushort // Valid bit length for integers

// (0 specifies up to the highest bit)

trigActive As ushort // Trigger active (0/1)
record As uint // Record length (number of samples)
recordLen As uint // Display record length

trigPosition As uint // Trigger position
// (record position of the 0 base point)

interval As double // Sampling interval (s)

3.4 WeModule Class

3-57IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

vResolution As double // Scaling factor for converting physical values
vOffset As double // Offset for converting physical values

trigLevel As double // Trigger level (the order of the physical value)
trigWidth As double // Trigger width (the order of the physical value)
plusOverData As double // Positive overrange value

// (the order of the acquisition data)
minusOverData As double // Negative overrange value

// (the order of the acquisition data)

nonData As double // Illegal value (the order of the acquisition data)
dispMaxData As double // Maximum display value

// (the order of the acquisition data)

dispMinData As double // Minimum display value
// (the order of the acquisition data)

End Structure

info (OUT) Data information pointer (old interface)
Structure AcqDataInfoEx

channel As ushort // Channel number(1 or greater)
dataType As ushort // Acquisition data type
blockNum As ushort // Number of valid blocks

startBit As ushort // Valid bit start position for integers
// (bit0 or greater)

effectiveBit As ushort // Valid bit length for integers

// (0 specifies up to the highest bit)
trigActive As ushort // Trigger active (0/1)
record As uint // Record length (number of samples)

recordLen As uint // Display record length
trigPosition As uint // Trigger position

// (record position of the 0 base point)

time As int // Acquisition time (time_t format) old rsv6
interval As double // Sampling interval (s)
vResolution As double // Scaling factor for converting physical values

vOffset As double // Offset for converting physical values
trigLevel As double // Trigger level (the order of the physical value)
trigWidth As double // Trigger width (the order of the physical value)

plusOverData As double // Positive overrange value
// (the order of the acquisition data)

minusOverData As double // Negative overrange value

// (the order of the acquisition data)
nonData As double // Illegal value (the order of the acquisition data)
dispMaxData As double // Maximum display value

// (the order of the acquisition data)
dispMinData As double // Minimum display value

// (the order of the acquisition data)

End Structure

dataType

' The data type of acquisition is prescribed by the following constants.
' WE_NULL No parameter
' WE_UBYTE Unsigned 8-bit integer

' WE_SBYTE Signed 8-bit integer
' WE_UWORD Unsigned 16-bit integer
' WE_SWORD Signed 16-bit integer

' WE_ULONG Unsigned 32-bit integer
' WE_SLONG Signed 32-bit integer

3.4 WeModule Class

3-58 IM 707741-62E

' WE_FLOAT 32-bit real number
' WE_DOUBLE 64-bit real number

infoNum (OUT) Number of AcqDataInfo that is actually read

Note:
When the acquisition mode is set to free run, the block number, blockNum, is always “1.”
The information attached to the acquired data varies depending on the module as follows.

• WE7081(Acquisition Mode)
Description:Information regarding raw data

dataType:Depends on the channel definition
startBit: Depends on the channel definition
effectiveBit: Depends on the channel definition

trigActive: When the trigger type is not Off: 1
When set to other or BUSTRG: 0

record:Record length setting

recordLen:Record-1
trigPosition:Pre-trigger setting
interval:Sampling interval setting

vResolution:1.0
vOffset:0.0
trigLevel:Trigger level setting

trigWidth:Meaningless
plusOverData:Meaningless
minusOverData:Meaningless

nonData:Meaningless
dispMaxData:Meaningless
dispMinData:Meaningless

• WE7111
Description: Information regarding the raw data

dataType: WE_SWORD in the Average mode, WE_SBYTE for all other modes.
blockNum: 1
startBit: Meaningless

effectiveBit: Meaningless
trigActive: 1 for data from the channel which is the trigger source, 0 otherwise. Meaningless when the
trigger source is set to BUSTRG.

record: Record length setting value
recordLen: Record length, depends on the time/div setting.
trigPosition: Trigger position, depends on the trigger position setting.

interval: Depends on the time/div setting.
vResolution: Depends on the V/div and probe attenuation settings.
vOffset: Depends on the offset voltage and probe attenuation settings

trigLevel: Depends on the trigger level and probe attenuation settings.
trigWidth: Meaningless
plusOverData: 0x3F00 in the Average mode, 0xFE for all other modes.

minusOverData: 0xC000 in the Average mode, 0x01 for all other modes
nonData: 0x8000 in the Average mode, 0xFE for all other modes.
dispMaxData: 0x3E00 in the Average mode, 0xFD for all other modes.

dispMinData: 0xC100 in the Average mode, 0x02 for all other modes

3.4 WeModule Class

3-59IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

• WE7116
Description: Information regarding A/D raw data

DataType: WE_SWORD
blockNum: Number of memory partitions
StartBit: Meaningless.

EffectiveBit: Meaningless.
TrigActive: When the trigger type is not Off: 1

When set to other or BUSTRG: 0

Record: Record length setting
RecordLen: Record -1
TrigPosition: Pre-trigger setting

Interval: Sampling interval setting
VResolution: Scaling factor for converting physical values
VOffset: Offset for converting physical values

TrigLevel: Trigger level setting
TrigWidth: Meaningless.
PlusOverData: DispMaxData+1

MinusOverData: DispMinData-1
NonData: PlusOverData
DispMaxData: Maximum display value

DsipMinData: Minimum display value

• WE7141
Description: Information regarding the physical value (depends on the measurement function setting)
dataType: WE_DOUBLE
blockNum: 1

startBit: Meaningless
effectiveBit: Meaningless
trigActive: Meaningless

record: Record length setting value
recordLen: Meaningless
trigPosition: Meaningless

interval: Sampling interval setting
vResolution: 1.0
vOffset: 0.0

trigLevel: Meaningless
trigWidth: Meaningless
plusOverData: +∞
minusOverData: -∞
nonData: Non number (NAN)
dispMaxData: Depends on the measurement function setting

dispMinData: Depends on the measurement function setting

• WE7231
Description: Information regarding the physical value (temperature, voltage, or resistance)
DataType: WE_FLOAT
BlockNum: Number of blocks measured after starting data acquisition

StartBit: Meaningless
EffectiveBit: Meaningless
TrigActive: Meaningless

Record: Record length setting
RecordLen: Meaningless
TrigPosition: Meaningless

Interval: Depends on the Sampling Interval setting
Vresolution: 1.0

3.4 WeModule Class

3-60 IM 707741-62E

Voffset: 0.0
TrigLevel: Meaningless
TrigWidth: Meaningless

PlusOverData: DispMaxData +100
MinusOverData: DispMinData -100
NonData: Non number (NAN)

DispMaxData: Depends on the measurement range
DsipMinData: Depends on the measurement range

• WE7235
Description: Information regarding A/D raw data
DataType: WE_SWORD

blockNum: Number of memory partitions
StartBit: Meaningless
EffectiveBit: Meaningless

TrigActive: When the trigger type is not Off: 1
When set to other or BUSTRG: 0

Record: Record length setting

RecordLen: Record -1
TrigPosition: Pre-trigger setting
Interval: Sampling interval setting

VResolution: Scaling factor for converting physical values
VOffset: Offset for converting physical values
TrigLevel: Trigger level setting

TrigWidth: Meaningless
PlusOverData: DispMaxData +1
MinusOverData: DispMinData -1

NonData: PlusOverData
DispMaxData: Maximum display value
DsipMinData: Minimum display value

• WE7241
Description: Information regarding the physical value (temperature or voltage)

dataType: WE_FLOAT
blockNum: 1
startBit: Meaningless

effectiveBit: Meaningless
trigActive: Meaningless
record: Record length setting

recordLen: Meaningless
trigPosition: Meaningless
interval: Sampling interval setting

vResolution: 1.0
vOffset: 0.0
trigLevel: Meaningless

trigWidth: Meaningless
plusOverData: “dispMaxData” +100
minusOverData: “dispMinData” -100

nonData: Non number (NAN)
dispMaxData: Depends on the measurement range setting
dispMinData: Depends on the measurement range setting

3.4 WeModule Class

3-61IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

• WE7245
Description: Information regarding the A/D raw data

DataType: WE_SWORD
blockNum: Number of memory partitions
StartBit: Meaningless

EffectiveBit: Meaningless
TrigActive: 1 if the trigger type is not Off, 0 otherwise. 0 also for BUSTRG.
Record: Record length setting

RecordLen: Record-1
TrigPosition: Pre-trigger setting
Interval: Sampling interval setting

VResolution: Depends on the measurement range, the calibration at the time of shipment, and the
execution of balancing.
VOffset: Depends on the measurement range, the calibration at the time of shipment, and the

execution of balancing.
TrigLevel: Trigger level setting
TrigWidth: Meaningless

PlusOverData: DispMaxData+1
MinusOverData: DispMinData-1
NonData: PlusOverData

DispMaxData: Depends on the measurement range and the calibration at the time of shipment.
DsipMinData: Depends on the measurement range and the calibration at the time of shipment.

• WE7251
Description: Information regarding raw data
dataType: WE_SWORD

blockNum: Number of memory partitions
startBit: Meaningless
effectiveBit: Meaningless

trigActive: 1 if the trigger type is not Off 0 otherwise. 0 also for BUSTRG.
record: Record length setting
recordLen: “record” - 1

trigPosition: Pre-trigger setting
interval: Sampling interval setting
vResolution: Measurement range, depends on the calibration value at the time of shipment

vOffset: Measurement range, depends on the calibration value at the time of shipment
trigLevel: Trigger level setting
trigWidth: Difference between the High and Low levels when the trigger type is In or OUT, meaningless

for all other types or when the trigger source is set to BUSTRG.
plusOverData: “dispMaxData” + 1
minusOverData: “dispMinData” - 1

nonData: “plusOverData”
dispMaxData: Measurement range, depends on the calibration value at the time of shipment
dispMinData: Measurement range, depends on the calibration value at the time of shipment

3.4 WeModule Class

3-62 IM 707741-62E

• WE7261/WE7262
Description: Information regarding the In/Out bit data

dataType: BIT16_TYP
blockNum: 1
startBit: 0

effectiveBit: 15
trigActive: Meaningless
record: 8192

recordLen: Meaningless
trigPosition: Meaningless
interval: Sampling interval setting

vResolution: Meaningless
vOffset: Meaningless
trigLevel: Meaningless

trigWidth: Meaningless
plusOverData: Meaningless
minusOverData: Meaningless

nonData: Meaningless
dispMaxData: 2
dispMinData: -1

• WE7271/7272/7275
Description: Information regarding raw data

dataType: WE_SWORD
blockNum: Number of memory partitions
startBit: Meaningless

effectiveBit: Meaningless
trigActive: 0 when the trigger type is set to OFF, 1 otherwise. Meaningless when the trigger source is
set to BUSTRG.

record: Record length setting
recordLen: “record” - 1
trigPosition: Pre-trigger setting

interval: Sampling interval setting
vResolution: Measurement range, depends on the calibration value at the time of shipment
vOffset: Measurement range, depends on the calibration value at the time of shipment

trigLevel: Trigger level setting
trigWidth: Meaningless
plusOverData: “dispMaxData” + 1

minusOverData: “dispMinData” - 1
nonData: “plusOverData”
dispMaxData: Measurement range, depends on the calibration value at the time of shipment

dispMinData: Measurement range, depends on the calibration value at the time of shipment

3.4 WeModule Class

3-63IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

• WE7311
Description: Information regarding raw data

DataType: WE_SBYTE
BlockNum: Specified number of blocks
StartBit: Meaningless

EffectiveBit: Meaningless
TrigActive: 1 for data from the channel which is the trigger source. Meaningless for all other channels
or when the trigger source is set to BUSTRG/External 1M/50.

Record: Record length setting
RecordLen: Depends on the record length and Time/div settings
TrigPosition: Depends on the pre-trigger, record length, and trigger position settings

Interval: Depends on the sampling interval and Time/div settings
Vresolution: Depends on the Range, V/div, and probe attenuation settings
Voffset: Depends on the offset voltage and probe attenuation settings

TrigLevel: Depends on the trigger level and probe attenuation settings
TrigWidth: Meaningless
PlusOverData: 0x7F

MinusOverData: 0x81
NonData: 0x80
DispMaxData: 0x7D

DsipMinData: 0x83

• WE7521
For Counter Mode
Description: Information regarding raw data
DataType: When the measurement function is UpDown1/UpDown2/UpDown4:

WE_SLONG
When the measurement function is Frequency:
Prior to transformation by the TransAcqData method: WE_ULONG

After transformation by the TransAcqData method: WE_FLOAT
When the measurement function is other than above: WE_ULONG

blockNum: Number of memory partitions

StartBit: Meaningless
EffectiveBit:

When the measurement function is Period/TI: value depending on the period stop determination time

When the measurement function is Frequency: value depending on the 128+period stop
determination time

When the measurement function is other than above: 0

WE Control API Draft Version 1/3
TrigActive: 1 if the trigger type is not OFF, 0 otherwise. 0 also for BUSTRG.
Record: Record length setting

RecordLen: Record –1
TrigPosition: Pre-trigger setting
Interval: Sampling interval setting

VResolution: Scaling factor for converting physical values
VOffset: Offset for converting physical values
TrigLevel: Trigger level setting

TrigWidth: Meaningless
PlusOverData: DispMaxData + 1
MinusOverData: DispMinData – 1

NonData: When the measurement function is UpDown1/UpDown2/UpDown4: 0x80000000
When the measurement function is other than above: 0xffffffff

DispMaxData: Maximum display value

DsipMinData: Minimum display value

3.4 WeModule Class

3-64 IM 707741-62E

For time stamp mode
Description: Information regarding raw data

DataType: WE_ULONG
Upper 24 bits: Time stamp data Lower 8 bits: Input change information

blockNum: Meaningless

StartBit: 8
EffectiveBit: 24
TrigActive: Meaningless

Record: Record length retrieved between latches
RecordLen: Meaningless
TrigPosition: Meaningless

Interval: Meaningless
VResolution: Scaling factor for converting physical values
VOffset: Offset for converting physical values

TrigLevel: Meaningless
TrigWidth: Meaningless
PlusOverData: Meaningless

MinusOverData: Meaningless
NonData: Meaningless
DispMaxData: Meaningless

DsipMinData: Meaningless

Example (Visual Basic .Net)
' Query the additional information pertaining to the acquisition data of

' all channels of the WE7111.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

' Waiting for completion of data acquisition after starting measurement

••••••

Dim info (2) As AcqDataInfoEx2

Dim num As Short

ret = Module1.GetAcqDataInfo (-1, 0, info, num)

GetAcqDataSize
Description
Determines the acquisition data size (number of bytes) of the measurement module. The number of

data bytes are adjusted according to the data type.

Syntax
GetAcqDataSize (ch As Short, blockNo As Integer, ByRef pointNum As Integer, ByRef dataSize As
Integer, ByRef ptype As Short, ByRef chNum As Short) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful. If the number exceeds the valid
number of blocks, an error occurs.

3.4 WeModule Class

3-65IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Parameters
ch (IN) Channel number. One origin. If the modules are linked, the channel number

spans across the linked modules. -1 represents all channels.
blockNo (IN) Block number. For details, see section 4.2, “Specifying the Data Block that You

Wish to Retrieve” in the WE Control API User’s Manual (IM 707741-61E).
pointNum (OUT) Number of data points. If -1 is specified for ch, the number of data points, of all

channels that can currently acquire data, is returned.

dataSize (OUT) Total number of bytes. If -1 is specified for ch, the data size, of all channels that
can currently acquire data, is returned. This number is undefined for free run
acquisition mode.

ptype (OUT) Data type
chNum (OUT) Total number of channels that can currently acuire data

Note:
For the free run acquisition mode, call the latch method LatchData as necessary before calling this
method. The data size between latches can be obtained. For details, see chapter 4, “Data Acquisition
Model” in the WE Control API User’s Manual (IM707741-61E).

Example (Visual Basic .Net)
' Get the data size of one channel of the WE7111.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

' Waiting for completion of data acquisition after starting measurement

••••••

Dim pointNum As Integer

Dim dataSize As Integer

DIm ptype As Short

Dim chNum As Short

ret = Module1.GetAcqDataSize(1, 0, pointNum, dataSize, ptype, chNum)

GetAcqData
Description
Retrieves acquisition data from the measurement module. The retrieved data are raw data that have
been A/D converted. The data format depends on the measurement module. The relevant information
can be obtained with the GetAcqDataInfo method.

Syntax
GetAcqData (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As SByte) As Short
GetAcqData (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As Byte) As Short
GetAcqData (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As Short) As Short

GetAcqData (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As UInt16) As Short
GetAcqData (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As Integer) As
Short

GetAcqData (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As UInt32) As Short
GetAcqData (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As UInt64) As Short
GetAcqData (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As Single) As Short

GetAcqData (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As Double) As
Short

3.4 WeModule Class

3-66 IM 707741-62E

Old interface
GetAcqData (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As SByte, ByRef

ptype As Short) As Short
GetAcqData (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As Byte, ByRef
ptype As Short) As Short

GetAcqData (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As Short, ByRef
ptype As Short) As Short
GetAcqData (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As UInt16, ByRef

ptype As Short) As Short
GetAcqData (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As Integer, ByRef
ptype As Short) As Short

GetAcqData (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As UInt32, ByRef
ptype As Short) As Short
GetAcqData (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As UInt64, ByRef

ptype As Short) As Short
GetAcqData (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As Single, ByRef
ptype As Short) As Short

GetAcqData (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As Double, ByRef
ptype As Short) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful. If the number exceeds the valid

number of blocks, an error occurs.

Parameters
ch (IN) Channel number. One origin is. If the modules are linked, the channel number

spans across the linked modules. -1 represents all channels.

blockNo (IN) Block number. For details, see section 4.2, “Specifying the Data Block that You
Wish to Retrieve” in the WE Control API User’s Manual (IM 707741-61E).

recSize (IN/OUT) Data buffer size for retrieving data or the data size that was retrieved (bytes)

buf (OUT) Pointer to the data buffer. Allocate enough buffer space to store the acquisition
data being retrieved. You can use the GetAcqDataSize () to query the data size.

ptype (OUT) Data type (old interface)

WE_NULL ' No parameter
WE_UBYTE ' 8-bit unsigned integer
WE_SBYTE ' 8-bit signed integer

WE_BIT8 ' 8-bit logical value
WE_UWORD ' 16-bit unsigned integer
WE_SWORD ' 16-bit signed integer

WE_BIT16 ' 16-bit logical value
WE_ULONG ' 32-bit unsigned integer
WE_SLONG ' 32-bit signed integer

WE_BIT32 ' 32-bit logical value
WE_FLOAT ' 32-bit real number
WE_DOUBLE ' 64-bit real number

WE_BIT64 ' 64-bit logical value

3.4 WeModule Class

3-67IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Note:
For the free run acquisition mode, call the latch method LatchData () before calling this method as

necessary. The data size between latches can be obtained. For details, see chapter 4, “Data
Acquisition Model” in the WE Control API User’s Manual (IM707741-61E).
The following figure depicts the data format when “-1”, that represents all channels, is specified for the

channel number (ch (IN)). If two modules are linked and the channels are enabled as shown in the
lower left figure, the disabled channels are skipped and data are continuously read as shown in the
lower right figure.

CH1
CH2
CH4
CH5
CH7
CH12
CH16
CH18

Record length

Example (Visual Basic .Net)
• Retrieving the raw data of channel 1 of WE7111
' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

•••••• ' Waiting for completion of data acquisition after starting

measurement

Dim recSize As Integer

Dim ptype As Short

' Allocate a buffer for a memory length of 10000 points.

Dim buf (10000) As Byte

' The number of bytes of the buffer is 10000 bytes

recSize = 10000

ret = module1.GetAcqData (1, 0, recSize, buf(0), ptype)

• Retrieving the raw data for all channels of the WE7251
' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the WE7251 module with a link number of 2.

ret = Module1.OpenModule (Station, "WE7251:1", 2)

•••••• ' Waiting for completion of data acquisition after starting

measurement

Dim recSize As Integer

Dim ptype As Short

' Allocate a buffer for a memory length of 1000*20Ch

Dim buf (1000*20) As Short

' The number of bytes of the buffer is 1000 x 20 x 2 bytes (WE_SWORD)

recSize = 1000*20*2

ret = Module1.GetAcqData (-1, 0, recSize, buf(0), ptype)

3.4 WeModule Class

3-68 IM 707741-62E

GetAcqDataEx
Description
Retrieves the acquisition data from the measurement module. Unlike GetAcqData, this method can
read the interpolated data (Peak-to-peak (MIN-MAX) data).

Syntax
GetAcqDataEx (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ppNum As

Integer, Interpolation As Short,ByRef recSize As Integer, ByRef buf As SByte) As Short
GetAcqDataEx (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ppNum As
Integer, Interpolation As Short,ByRef recSize As Integer, ByRef buf As Byte) As Short

GetAcqDataEx (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ppNum As
Integer, Interpolation As Short,ByRef recSize As Integer, ByRef buf As Short) As Short
GetAcqDataEx (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ppNum As

Integer, Interpolation As Short,ByRef recSize As Integer, ByRef buf As Uint16) As Short
GetAcqDataEx (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ppNum As
Integer, Interpolation As Short,ByRef recSize As Integer, ByRef buf As Integer) As Short

GetAcqDataEx (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ppNum As
Integer, Interpolation As Short,ByRef recSize As Integer, ByRef buf As UInt32) As Short
GetAcqDataEx (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ppNum As

Integer, Interpolation As Short,ByRef recSize As Integer, ByRef buf As Uint64) As ppNum As Integer,
Interpolation As Short,ByRef recSize As Integer, ByRef buf As Uint64) As
GetAcqDataEx (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ppNum As

Integer, Interpolation As Short,ByRef recSize As Integer, ByRef buf As Single) As Short
GetAcqDataEx (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ppNum As
Integer, Interpolation As Short,ByRef recSize As Integer, ByRef buf As Double) As Short

Old interface
GetAcqDataEx (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ppNum As

Integer, Interpolation As Short,ByRef recSize As Integer, ByRef buf As SByte, ByRef ptype As Short) As
Short
GetAcqDataEx (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ppNum As

Integer, Interpolation As Short,ByRef recSize As Integer, ByRef buf As Byte, ByRef ptype As Short) As
Short
GetAcqDataEx (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ppNum As

Integer, Interpolation As Short,ByRef recSize As Integer, ByRef buf As Short, ByRef ptype As Short) As
Short
GetAcqDataEx (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ppNum As

Integer, Interpolation As Short,ByRef recSize As Integer, ByRef buf As Uint16, ByRef ptype As Short)
As Short
GetAcqDataEx (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ppNum As

Integer, Interpolation As Short,ByRef recSize As Integer, ByRef buf As Integer, ByRef ptype As Short)
As Short
GetAcqDataEx (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ppNum As

Integer, Interpolation As Short,ByRef recSize As Integer, ByRef buf As UInt32, ByRef ptype As Short)
As Short
GetAcqDataEx (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ppNum As

Integer, Interpolation As Short,ByRef recSize As Integer, ByRef buf As Uint64, ByRef ptype As Short)
As Short
GetAcqDataEx (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ppNum As

Integer, Interpolation As Short,ByRef recSize As Integer, ByRef buf As Single, ByRef ptype As Short) As
Short
GetAcqDataEx (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ppNum As

Integer, Interpolation As Short,ByRef recSize As Integer, ByRef buf As Double, ByRef ptype As Short)
As Short

3.4 WeModule Class

3-69IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Return value
Returns 0 if successful. Returns an error code if unsuccessful. If the number exceeds the valid
number of blocks, an error occurs.

Parameters
ch (IN) Channel number. One origin. If the modules are linked, the channel number

spans across the linked modules. -1 represents all channels.
blockNo (IN) Block number. For details, see section 4.2, “Specifying the Data Block that You

Wish to Retrieve” in the WE Control API User’s Manual (IM 707741-61E).
startPoint (IN) Start point for the retrieval of the data. The counting origin is zero. Specifying -1

sets the start point to the top of the data.
endPoint (IN) Last point at which to retrieve the data. The counting origin is zero. Specifying -

1 sets the end point to the end of the data.
ppNum (IN) Number of display data sets (Pair of MIN and MAX values)

If -1:

Data compression/interpolation is not performed. (endPoint-startPoint+1) points
of data are returned.
If other than -1:

If ppNum > (endPoint - startPoint + 1), data interpolation takes place and ppNum
points of data are created.
If ppNum < (endPoint - startPoint + 1), data compression takes place and ppNum

points of data are created.
Interpolation (IN) Data interpolation type selection

WE_INTER_PULSE ' Pulse interpolation

WE_INTER_SIN ' Sin(x)/x interpolation
WE_INTER_LINE ' Line interpolation

recSize (IN/OUT) Data buffer size for retrieving data or the data size that was retrieved

buf (OUT) Pointer to the data buffer
ptype (OUT) Data type (old interface)

WE_NULL ' No parameter

WE_UBYTE ' 8-bit unsigned integer
WE_SBYTE ' 8-bit signed integer
WE_BIT8 ' 8-bit logical value

WE_UWORD ' 16-bit unsigned integer
WE_SWORD ' 16-bit signed integer
WE_BIT16 ' 16-bit logical value

WE_ULONG ' 32-bit unsigned integer
WE_SLONG ' 32-bit signed integer
WE_BIT32 ' 32-bit logical value

WE_FLOAT ' 32-bit real number
WE_DOUBLE ' 64-bit real number
WE_BIT64 ' 64-bit logical value

Note:
For the free run acquisition mode, call the latch method LatchData before calling this method as

necessary. The data size between latches can be obtained. For details, see chapter 4, “Data
Acquisition Model” in the WE Control API User’s Manual (IM707741-61E).

3.4 WeModule Class

3-70 IM 707741-62E

Example (Visual Basic .Net)
' Retrieve the acquisition data of channel 1 of the WE7111.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

' Waiting for completion of data acquisition after starting measurement

••••••

Dim recSize As Long

Dim buf(999) As Byte

Dim ptype As Integer

recSize = 1000

ret = Module1.GetAcqDataEx(1, 0, 1, 1000, -1, WE_INTER_SIN, recSize, buf(0),

ptype)

GetScaleData
Description
Retrieves the acquisition data of the measurement module that have been scaled. Converts the
acquisition data that have been A/D converted to physical values and then scales them according to

the user-specified scale parameter.

Syntax
GetScaleData (ch As Short, blockNo As Integer, ByRef param As ScalingParam, ByRef recSize As
Integer, ByRef buf As Single) As Short

GetScaleData (ch As Short, blockNo As Integer, ByRef param As ScalingParam, ByRef recSize As
Integer, ByRef buf As Double) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful. If the number exceeds the valid
number of blocks, an error occurs.

Parameters
ch (IN) Channel number. One origin. If the modules are linked, the channel number

spans across the linked modules. -1 represents all channels.
blockNo (IN) Block number. For details, see section 4.2, “Specifying the Data Block that You

Wish to Retrieve” in the WE Control API User’s Manual (IM 707741-61E).
param (IN/OUT) Scaling parameter information. If -1 is specified for ch, specify the channel worth

of params. Set the params in the order of channel data to be retrieved. The

scale values are used to calculate ax + b where x is the physical value of the
data.
Structure ScalingParam

a As Double ' a of the scaling parameter ax + b
b As Double ' b of the scaling parameter ax + b
ch As Integer ' Channel number retrieved

End Structure
recSize (IN/OUT) Data buffer size for retrieving data or the data size that was retrieved (bytes)
buf (OUT) Pointer to the data buffer. Allocate enough buffer space to store the acquisition

data being retrieved. Make sure to take ptype into account.

3.4 WeModule Class

3-71IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Note:
For the free run acquisition mode, call the latch method LatchData before calling this method as

necessary. The data size between latches can be obtained. For details, see chapter 4, “Data
Acquisition Model” in the WE Control API User’s Manual (IM707741-61E).

Example (Visual Basic .Net)
' Retrieve the physical value data of all channels of the WE7111.

' Retrieve the physical value data without scale conversion

' in 32-bit real number (4 bytes) format.

' (Specify 1 and 0 for a and b, respectively, in the scaling equation.)

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

' Waiting for completion of data acquisition after starting measurement

••••••

Dim recSize As Integer

' Allocate a buffer for a memory length of 1000 x 2ch

Dim buf (999*2) As Single

' The number of bytes of buffer is 1000 x 2ch x 4 bytes (WE_FLOAT)

recSize = 1000*2*4

Dim param (2) As ScalingParam

param (0).a = 1

param (0).b = 0

param (1).a = 1

param (1).b = 0

ret = Module1.GetScaleData (-1, 0, param(0), recSize, buf(0))

GetScaleDataEx
Description
Reads the data obtained after scaling the acquisition data of the measurement module. Uses the scale
conversion values that were specified using the SetScaleInfo method or the ShowLinearScaleWindow

method, that are stored in the module.

Syntax
GetScaleDataEx (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As Single) As
Short

GetScaleDataEx (ch As Short, blockNo As Integer, ByRef recSize As Integer, ByRef buf As Double) As
Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

3.4 WeModule Class

3-72 IM 707741-62E

Parameters
ch (IN) Channel number

One origin. If the modules are linked, it is the link number. -1 represents all
channels.

blockNo (IN) Block number
For details, see section 4.2, “Specifying the Data Block that You Wish to Retrieve”
in the WE Control API User’s Manual (IM 707741-61E).

recSize (IN/OUT) Size of the received data buffer in bytes (IN)/Size of the received data in bytes
(OUT)

buf (OUT) Pointer to the data buffer to be read.

Allocate enough buffer space to store the acquisition data being retrieved.

Example (Visual Basic .Net)
' Read the scale converted data of all the channels of the WE7111 module.

' Open the measuring station with the name "Station 1."

ret =Station.OpenStation ("Station1")

' Open the WE111 module with a link number of 2.

ret = Module1.OpenModule (Station,"WE7111:1",2)

' Waiting for completion of data acquisition after starting measurement

••••••

Dim recSize As Integer

' Allocate a buffer for a memory length of 1000 x 2ch

Dim buf (999*2) As Single

' The number of bytes of buffer is 1000 x 2ch x 4 bytes (WE_FLOAT)

recSize = 1000*2*4

ret = Module1.GetScaleDataEx (-1, 0, recSize, buf(0))

LatchData
Description
Issues the latch command that specifies the range of acquisition data to retrieve during the free run
mode. For details, see chapter 4, “Data Acquisition Model” in the WE Control API User’s Manual
(IM707741-61E).

Syntax
LatchData () As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
None

Example (Visual Basic .Net)
' Issue the latch command to WE7241.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the WE7241 module with link number of 2.

ret = Module1.OpenModule (Station, "WE7241:1", 2)

ret = Module1.Start ()

••••••

ret = Module1.LatchData ()

3.4 WeModule Class

3-73IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

GetCurrentData
Description
Retrieves instantaneous data from the measurement module. This method retrieves the newest data.

Syntax
GetCurrentData (ch As Short, ByRef recSize As Integer, ByRef buf As SByte) As Short
GetCurrentData (ch As Short, ByRef recSize As Integer, ByRef buf As Byte) As Short

GetCurrentData (ch As Short, ByRef recSize As Integer, ByRef buf As Short) As Short
GetCurrentData (ch As Short, ByRef recSize As Integer, ByRef buf As UInt16) As Short
GetCurrentData (ch As Short, ByRef recSize As Integer, ByRef buf As Integer) As Short

GetCurrentData (ch As Short, ByRef recSize As Integer, ByRef buf As UInt32) As Short
GetCurrentData (ch As Short, ByRef recSize As Integer, ByRef buf As Single) As Short
GetCurrentData (ch As Short, ByRef recSize As Integer, ByRef buf As Double) As Short

Old interface
GetCurrentData (ch As Short, ByRef recSize As Integer, ByRef buf As SByte, ByRef ptype As Short) As

Short
GetCurrentData (ch As Short, ByRef recSize As Integer, ByRef buf As Byte, ByRef ptype As Short) As
Short

GetCurrentData (ch As Short, ByRef recSize As Integer, ByRef buf As Short, ByRef ptype As Short) As
Short
GetCurrentData (ch As Short, ByRef recSize As Integer, ByRef buf As UInt16, ByRef ptype As Short)

As Short
GetCurrentData (ch As Short, ByRef recSize As Integer, ByRef buf As Integer, ByRef ptype As Short)
As Short

GetCurrentData (ch As Short, ByRef recSize As Integer, ByRef buf As UInt32, ByRef ptype As Short)
As Short
GetCurrentData (ch As Short, ByRef recSize As Integer, ByRef buf As Single, ByRef ptype As Short) As

Short
GetCurrentData (ch As Short, ByRef recSize As Integer, ByRef buf As Double, ByRef ptype As Short)
As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
ch (IN) Channel number. One origin. If the modules are linked, the channel number

spans across the linked modules. -1 represents all channels.

recSize (IN/OUT) Data buffer size for retrieving data or the data size that was retrieved
buf (OUT) Pointer to the data buffer. For a Description of the data types for each module,

see WeGetCurrentData in “Valid Common Measurement Control API” of each
module in chapter 8, “ASCII Commands” in the WE Control API User’s Manual
(IM707741-61E).

ptype (OUT) Data type (old interface)

WE_NULL ' No parameter
WE_UBYTE ' 8-bit unsigned integer
WE_SBYTE ' 8-bit signed integer

WE_UWORD ' 16-bit unsigned integer
WE_SWORD ' 16-bit signed integer
WE_ULONG ' 32-bit unsigned integer

WE_SLONG ' 32-bit signed integer
WE_FLOAT ' 32-bit real number
WE_DOUBLE ' 64-bit real number

3.4 WeModule Class

3-74 IM 707741-62E

Example (Visual Basic .Net)
• Retrieve instantaneous data from all channels of the WE7251.
' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the WE7251 module with a link number of 1

ret = Module1.OpenModule (Station, "WE7251:1", 1)

' Waiting for completion of data acquisition after starting measurement

••••••

' Allocate Double 10 CH of data buffer.

Dim buf (10) As Double

Dim recSize As Long

Dim ptype As Integer

recSize = 10*8 ' 10CH x 8 bytes

ret = Module1.GetCurrentData (-1, recSize, buf(0), ptype)

• Retrieve instantaneous data from all channels of the WE7241.
' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the WE7241 module with a link number of 1

ret = Module1.OpenModule (Station, "WE7241:1", 1)

' Waiting for completion of data acquisition after starting measurement

••••••

' Allocate Single 10 CH of data buffer.

Dim buf (10) As Single

Dim recSize As Long

recSize = 10*4 ' 10CH x 4 bytes

ret = Module1.GetCurrentData (-1, recSize, buf(0))

Note:
Retrieval is carried out even if there is no data for one or more of the specified channels.

GetScaleCurrentData
Description
Reads the data obtained after scaling the instantaneous values of the measurement module.

Syntax
GetScaleCurrentData (ch As Short, ByRef param As ScalingParam, ByRef recSize As Integer, ByRef

buf As Single) As Short
GetScaleCurrentData (ch As Short, ByRef param As ScalingParam, ByRef recSize As Integer, ByRef
buf As Double) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

3.4 WeModule Class

3-75IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Parameters
ch (IN) Channel number. One origin. If the modules are linked, it is the link number. -1

represents all channels.
param (IN/OUT) Scale parameter information

If -1 is specified for ch, the number of Parameters that needs to be specified is
equal to the number of channels. Set the params in the order of channel data to
be retrieved. The scale values are used to calculate ax + b where x is the

physical value of the data.
Structure ScalingParam

a As Double ' a of the scaling parameter ax + b

b As Double ' b of the scaling parameter ax + b
ch As Long ' Channel number retrieved

End Structure

recSize (IN/OUT) Size of the received data buffer in bytes (IN)/Size of the received data in bytes
(OUT)

buf (OUT) Pointer to the data buffer to be read.

Example (Visual Basic .Net)
Read the data obtained after scaling the instantaneous value of the WE7271

module.

' Open the measuring station with the name "Station 1."

ret =Station.OpenStation ("Station1")

' Open the WE7271 module with a link number of 1.

ret = Module1.OpenModule (Station,"WE7271:1",1)

' Waiting for completion of data acquisition after starting measurement

••••••

' Allocate a buffer for a memory length of Double 4ch

Dim buf (3) As Double

Dim recSize As Long

recSize = 4*8 ' 4ch x 8 bytes

Dim param(3) As ScalingParam

param(0).a =1.0

param(0).b =0.0

param(1).a =2.0

param(1).b =0.0

param(2).a =3.0

param(2).b =0.0

param(3).a =4.0

param(3).b =0.0

ret = Module1.GetScaleCurrentData (-1, param(0), recSize, buf(0))

Note:
Channels not specified for measurement are also included in the data, so you must specify enough
buffers to accommodate those channles as well.

3.4 WeModule Class

3-76 IM 707741-62E

GetScaleCurrentDataEx
Description
Reads the data obtained after scaling the instantaneous values of the measurement module. Uses the
scale conversion values that were specified using the SetScaleInfo method or the
ShowLinearScaleWindow method, that are stored in the module.

Syntax
GetScaleCurrentDataEx (ch As Short, ByRef recSize As Integer, ByRef buf As Single) As Short
GetScaleCurrentDataEx (ch As Short, ByRef recSize As Integer, ByRef buf As Double) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
ch (IN) Channel number

One origin. If the modules are linked, it is the link number. -1 represents all
channels.

recSize (IN/OUT) Size of the received data buffer in bytes (IN)/Size of the received data in bytes
(OUT)

buf (OUT) Pointer to the data buffer to be read.

Example (Visual Basic .Net)
Read the data obtained after scaling the instantaneous value of the WE7271

module.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the WE7271 module with a link number of 1.

ret = Module1.OpenModule (Station,"WE7271:1",1)

' Waiting for completion of data acquisition after starting measurement

••••••

' Allocate a buffer for a memory length of Double 4ch

Dim buf (3) As Double

Dim recSize As Long

recSize = 4*8 ' 4ch x 8 bytes

ret = Module1.GetScaleCurrentDataEx (-1, recSize, buf(0))

Note:
Channels not specified for measurement are also included in the data, so you must specify enough
buffers to accommodate those channles as well.

3.4 WeModule Class

3-77IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

GetMeasureParam
Description
Gets the automated measurement values from the measurement module. The automated
measurement values are the results analyzed by the modules. For modules that do not have the
automated measurement method, the ExecMeasureParam method can be used.

Syntax
GetMeasureParam (ch As Short, blockNo As Integer, startPoint As Integer, endPoint As Integer, ByRef
item As MeasureItem, ByRef itemNum As Short) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful. If the number exceeds the valid

number of blocks, an error occurs.

Parameters
ch (IN) Channel number. One origin. If the modules are linked, the channel number

spans across the linked modules. -1 represents all channels.

blockNo (IN) Block number. For details, see section 4.2, “Specifying the Data Block that You
Wish to Retrieve” in the WE Control API User’s Manual (IM 707741-61E).

startPoint (IN) Start point of the data for the automated measurement. One origin. Specifying -

1 sets the start point to the top of the data.
endPoint (IN) End point of the data for the automated measurement. One origin. Specifying -1

sets the end point to the end of the data.

item (OUT) Measurement information pointer
Structure MeasureItem ' Measurement result storage structure

Channel As Double ' CH number (1 or greater)

Max As Double ' Maximum value
Min As Double ' Minimum value
High As Double ' High level

Low As Double ' Low level
PP As Double ' P-P value
Ampl As Double ' Amplitude

Avg As Double ' Average value
Rms As Double ' RMS value
Middle As Double ' Center value of the amplitude

StdDev As Double ' Standard deviation
Oshoot As Double ' Overshoot
Ushoot As Double ' Undershoot

Rise As Double ' Rise time
Fall As Double ' Fall time
Freq As Double ' Frequency

Period As Double ' Period
Duty1 As Double ' Duty cycle on the High side
Duty2 As Double ' Duty cycle on the Low side

Width1 As Double ' Width above the mesial value
Width2 As Double ' Width below the mesial value

End Structure

itemNum (OUT) Number of MeasureItem that are actually retrieved

3.4 WeModule Class

3-78 IM 707741-62E

Example (Visual Basic .Net)
' Get the measurement data of channel 1 of the WE7111.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

' Waiting for completion of data acquisition after starting measurement

••••••

Dim buf As MeasureItem

Dim num As Integer

ret = Module1.GetMeasureParam (1, 0, 1, 10000, buf, num)

SaveAcqData
Description
Saves the acquisition data of the measurement module to a file.

Syntax
SaveAcqData (ch As Short, blockNo As Integer, filename As String, htype As Short) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
ch (IN) Channel number. One origin is. If the modules are linked, the channel number

spans across the linked modules. -1 represents all channels.
blockNo (IN) Block number. If the number exceeds the valid number of blocks, all block data

are saved. For details, see section 4.2, “Specifying the Data Block that You Wish
to Retrieve” in the WE Control API User’s Manual (IM 707741-61E).

filename (IN) File name. The file extension is not necessary. A file with the extension, WVF, is

created.
htype (IN) Whether or not to create the waveform information file (HDR file extension) for

the acquisition data (0: do not create, 1: create).

Example (Visual Basic .Net)
' Save the raw data of channel 1 of the WE7111 to a file.

' Create a header file.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

' Waiting for completion of data acquisition after starting measurement

••••••

ret = Module1.SaveAcqData (1, 0, "c:\dsoparam",1)

SaveScaleData
Description
Saves the scaled acquisition data of the measurement module to a file.

Syntax
SaveScaleData (ch As Short, blockNo As Integer, ByRef param As ScalingParam, filename As String,
htype As Short) As Short

3.4 WeModule Class

3-79IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
ch (IN) Channel number. One origin. If the modules are linked, the channel number

spans across the linked modules. -1 represents all channels.

blockNo (IN) Block number. For details, see section 4.2, “Specifying the Data Block that You
Wish to Retrieve” in the WE Control API User’s Manual (IM 707741-61E).

param (IN/OUT) Scaling parameter information

Structure ScalingParam
a As Double ' a of the scaling parameter ax + b
b As Double ' b of the scaling parameter ax + b

ch As Long ' Channel number retrieved
End Structure

filename (IN) File name. The file extension is not necessary. A file with the extension, WVF, is

created.
htype (IN) Whether or not to create the waveform information file (HDR file extension) for

the acquisition data (0: do not create, 1: create).

Example (Visual Basic .Net)
' Save the physical value data of channel 1 of the WE7111.

' Create a header file.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

' Waiting for completion of data acquisition after starting measurement

••••••

Dim param (1) As ScalingParam

param (0).a = 1.0

param (0).b = 0.0

param (1).a = 1.0

param (1).b = 0.0

ret = Module1.SaveScaleData (1, 0, param(0), "c:\dsoparam", 1)

SaveScaleDataEx
Description
Saves the scaled acquisition data of the measurement module to a file in binary format. Uses the scale
conversion values that were specified using the SetScaleInfo method or the ShowLinearScaleWindow

method, that are stored in the module.

Syntax
SaveScaleDataEx (ch As Short, blockNo As Integer, filename As String, htype As Short) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

3.4 WeModule Class

3-80 IM 707741-62E

Parameters
ch (IN) Channel number

One origin. If the modules are linked, it is the link number. -1 represents all
channels.

blockNo (IN) Block number
For details, see section 4.2, “Specifying the Data Block that You Wish to Retrieve”
in the WE Control API User’s Manual (IM 707741-61E).

filename (IN) File name.
The file extension is not necessary. A file with the extension, WVF, is created.

htype (IN) Whether or not to create the waveform information file (HDR file extension) for

the acquisition data (0: do not create, 1: create).

Example (Visual Basic .Net)
' Save the raw data of all the channels of the WE7111 to a file.

' Create a header file.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the WE111 module with a link number of 2.

ret = Module1.OpenModule (Station,"WE7111:1", 2)

' Waiting for completion of data acquisition after starting measurement

••••••

ret = Module1.SaveScaleDataEx (-1, 0, "c:\ WE7111Data", 1)

SaveAsciiData
Description
Saves the physical value data of the measurement module to a file in ASCII format (CSV format). the
physical value data is the measurement unit data of the module. This is not the scaled acquisition
data. The measurement unit of the digitizer module is “voltage,” for example.

Syntax
SaveAsciiData (ch As Short, blockNo As Integer, filename As String, htype As Short) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
ch (IN) Channel number. One origin. If the modules are linked, the channel number

spans across the linked modules. -1 represents all channels.
blockNo (IN) Block number
filename (IN) File name. The file extension is not necessary. A file with the extension, CSV, is

created.
htype (IN) Whether or not to create the waveform information file (HDR file extension) for

the acquisition data (0: do not create, 1:create).

Example (Visual Basic .Net)
' Save the physical value data of channel 1 of the WE7111 in

' ASCII format.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

ret = Module1.SaveAsciiData (1, 0, "c:\dsodata", 1)

3.4 WeModule Class

3-81IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

SaveScaleAsciiData
Description
Saves the scaled acquisition data of the measurement module to a file in ASCII format (CSV format).

Syntax
SaveScaleAsciiData (ch As Short, blockNo As Integer, ByRef param As ScalingParam, filename As
String, htype As Short) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
ch (IN) Channel number

One origin. If the modules are linked, it is the link number. -1 represents all

channels.
blockNo (IN) Block number
param (IN/OUT) Scale value information

If -1 is specified for ch, the number of Parameters that needs to be specified is
equal to the number of channels. Set the params in the order of channel data to
be retrieved. The scale values are used to calculate ax + b where x is the

physical value of the data.
Structure ScalingParam

a As Double ' a of the scaling parameter ax + b

b As Double ' b of the scaling parameter ax + b
ch As Long ' Channel number retrieved

End Structure

filename (IN) File name.
The file extension is not necessary. A file with the extension, CSV, is created.

htype (IN) Whether or not to create the waveform information file (HDR file extension) for

the acquisition data (0: do not create, 1: create).

Example (Visual Basic .Net)
' Save the scaled physical value data of all the channels of the WE7111 in

' ASCII format.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the WE111 module with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

Dim param(1)As ScalingParam

param(0).a =1.0

param(0).b =0.0

param(1).a =2.0

param(1).b =0.0

' Waiting for completion of data acquisition after starting measurement

••••••

ret = Module1.SaveScaleAsciiData (-1, 0, param(0), "c:\WE7111Data", 1)

3.4 WeModule Class

3-82 IM 707741-62E

SaveScaleAsciiDataEx
Description
Saves the scaled acquisition data of the measurement module to a file in ASCII format (CSV format).
Uses the scale conversion values that were specified using the SetScaleInfo method or the
ShowLinearScaleWindow method, that are stored in the module.

Syntax
SaveScaleAsciiDataEx (ch As Short, blockNo As Integer, filename As String, htype As Short) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
ch (IN) Channel number

One origin. If the modules are linked, it is the link number. -1 represents all
channels.

blockNo (IN) Block number

filename (IN) File name.
The file extension is not necessary. A file with the extension, CSV, is created.

htype (IN) Whether or not to create the waveform information file (HDR file extension) for

the acquisition data (0: do not create, 1: create).

Example (Visual Basic .Net)
' Save the scaled physical value data of all the channels of the WE7111 in

' ASCII format.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the WE111 module with a link number of 2.

ret = Module1.OpenModule (Station,"WE7111:1", 2)

' Waiting for completion of data acquisition after starting measurement

••••••

ret = Module1.SaveScaleAsciiDataEx (-1, 0, "c:\WE7111Data", 1)

SaveAcqHeader
Description
Creates the waveform information file for the acquisition data of the measurement module. The file that
is created is the same file created with the SaveAcqData method.

Syntax
SaveAcqHeader (ch As Short, filename As String) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful. If the number exceeds the valid
number of blocks, an error occurs.

Parameters
ch (IN) Channel number to save. One origin. If the modules are linked, the channel

number spans across the linked modules. -1 represents all channels.
filename (IN) File name. The file extension is not necessary. A file with the extension, HDR, is

created.

3.4 WeModule Class

3-83IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Example (Visual Basic .Net)
' Save the waveform information file for all channels of the WE7111

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open module WE7111 with a link number of 2.

ret = Module1.OpenModule (Station, "WE7111:1", 2)

' Waiting for completion of data acquisition after starting measurement

••••••

ret = Module1.SaveAcqHeader (-1, "c:\station")

SavePatternData
Description
Saves the pattern data that are dependent on the measurement module to a file. The pattern data are

different for each module. Some modules do not have pattern data defined. Pattern data are, for
example, the arbitrary waveform data for the WE7121 and the digital pattern data for the WE7131.

Syntax
SavePatternData (ch As Short, filename As String) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
ch (IN) Channel number. One origin. If the modules are linked, the channel number

spans across the linked modules. -1 represents all channels.
filename (IN) File name. The file extension is not necessary. The file extension defined for

each measurement module is automatically added.

Example (Visual Basic .Net)
' Save the pattern data of channel 1 of the WE7131.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the WE7131 module with a link number of 1.

ret = Module1.OpenModule (Station, "WE7131:1",1)

ret = Module1.SavePatternData (1, "c:\piopattern")

LoadPatternData
Description
Loads the pattern data that are dependent on the measurement module . The pattern data are
different for each module. Some modules do not have pattern data defined. Pattern data are, for

example, the arbitrary waveform data for the WE7121 and the digital pattern data for the WE7131.

Syntax
LoadPatternData (ch As Short, filename As String) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

3.4 WeModule Class

3-84 IM 707741-62E

Parameters
ch (IN) Channel number. One origin. If the modules are linked, the channel number

spans across the linked modules. -1 represents all channels.
filename (IN) File name

Example (Visual Basic .Net)
' Load the arbitrary waveform data to channel 1 of the WE7121.

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the WE7121 module with a link number of 1.

ret = Module1.OpenModule (Station, "WE7121:1",1)

ret = Module1.LoadPatternData (1, "c:\fgarb")

LoadPatternDataEx
Description
Loads the waveform data that are retrieved using the specified parameter from the specified file (wvf or
csv format) to the measurement module.

Syntax
LoadPatternDataEx (command As String, filename As String, ch As Short, blockNo As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
command (IN) ASCII command
filename (IN) File name
ch (IN) Channel number. One origin.

blockNo (IN) Block number. Zero origin.

Note:
By setting the channel number to 0x7FFF or the block number to 0x7FFFFFFF, the waveform data of
all channels or all blocks are transferred.
For the WE7281 module, auto load (AG:Misc:Load:Auto command) must be turned On.

Example (Visual Basic .Net)
• Example in which the LoadPatternDataEx method is used
' Transfer the Block0 data of CH1 of the wvf file saved by the

' WE7271 module to CH1 of the WE7281 module.

ret = module1.LoadPatternDataEx ("FG:CH1:Load ARB", "c:\we7271.wvf", 1, 0)

3.4 WeModule Class

3-85IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

• Example in which the Filter method is used
Dim size As Integer

' Determine the byte size when the Block0 data of CH1 of the wvf

' file saved by the WE7271 module are converted to the format used

' by the FG mode on the WE7281 module.

ret = Filter.Wvf2S16GetSize("c:\we7271.wvf", 1, 0, size)

' Allocate the buffer using the retrieved data size.

size = size/2

ReDim s16buf(size) As Short

' Convert the Block0 data of CH1 of the wvf file saved by the

' WE7271 module to the format used by the FG mode on the WE7281 module.

ret = Filter.Wvf2S16("c:\we7271.wvf", 1, 0, s16buf(0), size)

' Transfer the converted data to CH1 of the WE7281 module.

ret = Module1.SetControl ("FG:CH1:Load ARB", s16buf)

SetOverRun
Description
Select whether or not to detect overruns.

Syntax
SetOverRun (sw As Byte) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
sw (IN) Overrun detection setting

0 ' Do not detect overruns (do not stop when an overrun occurs)
1 ' Detect overruns (stop when an overrun occurs)

Note:
Overruns are detected as default.

Example (Visual Basic .Net)
' Disable the overrun detection on the WE7241 module.

' Open the station handle.

ret = Station.OpenStation ("Station1")

' Open module WE7241.

ret = Module1.OpenModule (Station, "WE7241:1", 1)

' Disable the overrun detection on the WE7241 module.

ret = Module1.SetOverRun (hMo, 0)

GetOverRun
Description
Queries whether or not overruns are to be detected.

Syntax
GetOverRun (ByRef sw As Byte) As Short

3.4 WeModule Class

3-86 IM 707741-62E

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
sw (IN) Overrun detection setting

0 ' Do not detect overruns (do not stop when an overrun occurs)

1 ' Detect overruns (stop when an overrun occurs)

Example (Visual Basic .Net)
' Queries the overrun detection setting on the WE7241 module.

Dim sw As Byte

' Open the station handle.

ret = Station.OpenStation ("Station1")

' Open module WE7241.

ret = Module1.OpenModule (Station, "WE7241:1", 1)

' Queries the overrun detection setting.

ret = Module1.GetOverRun (sw)

CreateEvent
Description
Creates a handle for handling measurement module events and enables the operation. Up to 32
handles can be created for each measurement module. The cause of events are module common
events and module dependent events. For a Description of the module-dependent events, see the

command table of each module in the WE Control API User’s Manual (IM707741-61E).

Syntax
CreateEvent (pattern As Integer, mode As Integer, ByRef evHandle As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
pattern (IN) Causes of events. The following common events are defined. Multiple events

can be specified. There are other module dependent events that are defined
beside the one listed below. For details, see chapter 8, “ASCII Commands” in
the WE Control API User’s Manual (IM707741-61E).
WE_EV_MEASSTART ' Generated when the start operation

' completes
WE_EV_MEASEND ' Generated when the specified number of

' blocks of data are acquired.
WE_EV_MEASABORT ' Generated when the start state (RUN state)

' is cleared.

WE_EV_BLOCKEND ' Generated each time data are acquired to
' the block when acquiring data using
' memory partitions (blocks).

WE_EV_ERROR ' Generated when an error defined by the
' measurement module occurs.
' For details regarding the errors see the

' command table for each module.

3.4 WeModule Class

3-87IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

mode (IN) Event operation mode
WE_EV_STOP ' Disable the event operation.

WE_EV_CONT ' Detect and generate the event repetitively.
WE_EV_SINGLE ' Detect and generate the event once.
WE_EV_SINGLE_RELEASE ' Detect and generate the event once

' and then release the event handle.
evHandle (OUT) Event handle retrieved

Note:
Handles do not need to be created for the power event (WE_EV_POWER) and the fan stop event
(WE_EV_FANSTOP). These events are always detected.

Example (Visual Basic .Net)
' Set (Enable) the block end event for the WE7251.

Dim ret As Integer

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the WE7251 module with a link number of 1.

ret = Module1.OpenModule (Station, "WE7251", 1)

' Set the block end event.

ret = Module1.CreateEvent (WeControl.WE_EV_BLOCKEND, WeControl.WE_EV_CONT,

evHandle)

SetEventPattern
Description
Set the cause of an event of the measurement module.

Syntax
SetEventPattern (evHandle As Integer, pattern As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
evHandle (IN) Event handle (0 to 31)

pattern (IN) Cause of an event

Example (Visual Basic .Net)
' Set (Enable) the block end event for the WE7251.

Dim evHandle As Integer

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the WE7251 module with a link number of 1.

ret = Module1.OpenModule (Station, "WE7251", 1)

' Set the measurement end event.

ret = Module1.CreateEvent(0, WeControl.WE_EV_CONT, evHandle)

ret = Module1.SetEventPattern(evHandle, WeControl.WE_EV_BLOCKEND)

3.4 WeModule Class

3-88 IM 707741-62E

ResetEventPattern
Description
Resets the cause of an event of the measurement module.

Syntax
ResetEventPattern (evHandle As Integer, pattern As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
evHandle (IN) Event handle (0 to 31)
pattern (IN) Cause of an event

Example (Visual Basic .Net)
' Reset (Clear) the block end event for the WE7251.

Dim evHandle As Integer

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the WE7251 module with a link number of 1.

ret = Module1.OpenModule (Station, "WE7251", 1)

ret = Module1.CreateEvent (WeControl.WE_EV_BLOCKEND, WeControl.WE_EV_CONT,

evHandle)

ret = Module1.ResetEventPattern (evHandle, WeControl.WE_EV_BLOCKEND)

SetEventMode
Description
Set the operation mode of the measurement module events.

Syntax
SetEventMode (evHandle As Integer, mode As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
evHandle (IN) Event handle (0 to 31)
mode (IN) Event operation mode

WE_EV_STOP ' Disable the event operation.
WE_EV_CONT ' Detect and generate the event repetitively.
WE_EV_SINGLE ' Detect and generate the event once.

WE_EV_SINGLE_RELEASE ' Detect and generate the event once and
' then release the event handle.

3.4 WeModule Class

3-89IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Example (Visual Basic .Net)
' Disable the event operation mode for the WE7251.

Dim evHandle As Long

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the WE7251 module with a link number of 1.

ret = Module1.OpenModule (Station, "WE7251", 1)

ret = Module1.CreateEvent (WeControl.WE_EV_BLOCKEND, WeControl.WE_EV_CONT,

evHandle)

ret = Module1.SetEventMode (evHandle, WeControl.WE_EV_STOP)

ReleaseEvent
Description
Releases the event handle of the measurement module. The handle cannot be used after it is
released. However, the number can be used to create a new handle.

Syntax
ReleaseEvent (evHandle As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
evHandle (IN) Event handle (0 to 31)

Example (Visual Basic .Net)
' Set the block end event for the WE7251 and then release the handle.

Dim evHandle As Long

' Open the measuring station with the name "Station 1."

ret = Station.OpenStation ("Station1")

' Open the WE7251 module with a link number of 1.

ret = Module1.OpenModule (Station, "WE7251", 1)

' Set the block end event.

ret = Module1.CreateEvent(WeControl.WE_EV_BLOCKEND, WeControl.WE_EV_CONT,

evHandle)

ret = Module1.ReleaseEvent (evHandle)

3.4 WeModule Class

3-90 IM 707741-62E

3.5 WeLib Class

ExecMeasureParam
Description
Performs automated computations on physical value data. GetMeasureParam method performs the
automated computation of waveform Parameters in the measurement module, but this method

computes the parameters on the PC.

Syntax
ExecMeasureParam (ByRef data As Single, dt As Double, startPoint As Integer, endPoint As Integer,
ByRef item As MeasureItem) As Short

ExecMeasureParam (ByRef data As Double, dt As Double, startPoint As Integer, endPoint As Integer,
ByRef item As MeasureItem) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
data (IN) The computed data of waveform parameter. The data is physical value.
dt (IN) Sampling interval (seconds)
startPoint (IN) Starting point of the data to compute the parameter values. One origin.

endPoint (IN) Last point of the data to compute the parameter values. One origin. Calculates
the parameter values using the data in the range from startPoint to endPoint.

item (OUT) Waveform parameter pointer
Structure MeasureItem ' Computation result storage structure

Channel As Double ' CH number (0)
Max As Double ' Maximum value
Min As Double ' Minimum value

High As Double ' High level
Low As Double ' Low level
PP As Double ' P-P value

Ampl As Double ' Amplitude
Avg As Double ' Average value
Rms As Double ' RMS value

Middle As Double ' Center value of the amplitude
StdDev As Double ' Standard deviation
Oshoot As Double ' Overshoot

Ushoot As Double ' Undershoot
Rise As Double ' Rise time
Fall As Double ' Fall time

Freq As Double ' Frequency
Period As Double ' Period
Duty1 As Double ' Duty cycle on the High side

Duty2 As Double ' Duty cycle on the Low side
Width1 As Double ' Width above the mesial value
Width2 As Double ' Width below the mesial value

End Structure

3-91IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Example (Visual Basic .Net)
' Retrieves the measurement results of 1000 points of data

' at a sampling rate of 0.5 sec.

Dim item As Measureitem

Dim data (1000) As Single

ret = Lib1.ExecMeasureParam (data(0), 0.5, 1, 1000, item)

ExecMeasureParamAcqData
Description
Performs automated computations on the acquisition data (data after A/D conversion).

GetMeasureParam method performs the automated computation of waveform Parameters in the
measurement module, but this method computes the parameters on the PC.

Syntax
ExecMeasureParamAcqData (ByRef data As SByte, gain As Double, ofst As Double, dt As Double,

startPoint As Integer, endPoint As Integer, ByRef item As MeasureItem) As Short
ExecMeasureParamAcqData (ByRef data As Byte, gain As Double, ofst As Double, dt As Double,
startPoint As Integer, endPoint As Integer, ByRef item As MeasureItem) As Short

ExecMeasureParamAcqData (ByRef data As Short, gain As Double, ofst As Double, dt As Double,
startPoint As Integer, endPoint As Integer, ByRef item As MeasureItem) As Short
ExecMeasureParamAcqData (ByRef data As UInt16, gain As Double, ofst As Double, dt As Double,

startPoint As Integer, endPoint As Integer, ByRef item As MeasureItem) As Short
ExecMeasureParamAcqData (ByRef data As Integer, gain As Double, ofst As Double, dt As Double,
startPoint As Integer, endPoint As Integer, ByRef item As MeasureItem) As Short

ExecMeasureParamAcqData (ByRef data As UInt32, gain As Double, ofst As Double, dt As Double,
startPoint As Integer, endPoint As Integer, ByRef item As MeasureItem) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
data (IN) Pointer to the data on which to perform the automated computation

gain (IN) Gain (Range)
ofst (IN) Offset

Converts the data to physical values according to the following equation. X is the

value of the acquisition data.
gain x X + ofst

dt (IN) Sampling interval (seconds)

startPoint (IN) Starting point of the data to be used to compute the parameter values.
endPoint (IN) Last point of the data to be used to compute the parameter values.

Calculates the parameter values using the data in the range from startPoint to

endPoint.

3.5 WeLib Class

3-92 IM 707741-62E

item (OUT) Waveform parameter pointer
Structure MeasureItem ' Computation result storage structure

Channel As Double ' CH number
Max As Double ' Maximum value
Min As Double ' Minimum value

High As Double ' High level
Low As Double ' Low level
PP As Double ' P-P value

Ampl As Double ' Amplitude
Avg As Double ' Average value
Rms As Double ' RMS value

Middle As Double ' Center value of the amplitude
StdDev As Double ' Standard deviation
Oshoot As Double ' Overshoot

Ushoot As Double ' Undershoot
Rise As Double ' Rise time
Fall As Double ' Fall time

Freq As Double ' Frequency
Period As Double ' Period
Duty1 As Double ' Duty cycle on the High side

Duty2 As Double ' Duty cycle on the Low side
Width1 As Double ' Width above the mesial value
Width2 As Double ' Width below the mesial value

End Structure

Example (Visual Basic .Net)
' Retrieve the Computation result of 1000 points of data at

' sampling rate of 0.5 sec, gain of 1.0, and offset of 0.0.

Dim item As Measureitem

Dim data (1000) As Single

ret = Lib1.ExecMeasureParam AcqData(data(0), 1.0, 0.0, 0.5, 1, 1000, item)

GetHandle
Description
Gets the module handle from the second parameter (station number in the upper 16 bits and the

module number in the lower 16 bits) of the event explained in WeModule Class.

Syntax
GetHandle (param As Integer, ByRef hMo As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
param (IN) The value of the second parameter of the event (lparam).
hMo (OUT) Module handle to be retrieved.

Example (Visual Basic .Net)
' Get the module handle.

Dim hMo As Long

ret = Lib1.GetHandle (param, hMo)

3.5 WeLib Class

3-93IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

IsNan
Description
Queries whether or not the data are non-numeric.

Syntax
IsNan (value As Single) As Short
IsNan (value As Double) As Short

Return value
Returns 0 when it is not non-numeric. Returns a nonzero number otherwise.

Parameters
value (IN) Data specified

Example (Visual Basic .Net)
' Check whether or not a value is non-numeric.

Dim data As Single

data = 9999999

ret = Lib1.IsNan (data)

GetAlarmInfo
Description
Gets the alarm information.

Syntax
GetAlarmInfo(dp As Integer, ByRef buf As Integer, size As Integer, handle As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
dp (IN) Data to be specified.

Specifies member dp of the second parameter e of the WeAlarm event handler.
buf (OUT) Alarm information storage buffer
size (IN) Data size

handle (IN) Specifies member handle of the second parameter e of the WeAlarm event
handler.

3.5 WeLib Class

3-94 IM 707741-62E

Example (Visual Basic .Net)
Private Sub AxWeEvent1_WeAlarm(ByVal sender As Object,

ByVal e As AxWEEVENTLib._DWeEventEvents_WeAlarmEvent)

Handles AxWeEvent1.WeAlarm

 Dim hMo As Integer

 Dim recSize As Integer

 Dim i As Integer

 Dim buf() As Integer

 ret = Lib1.GetHandle(e.handle, hMo) ' Get the handle

 If hMo = Module1.hMo Then

 Lib1.MoveMemory(recSize, e.dp, 4) ' Get the data size

 If recSize <> 0 Then

 ReDim buf(recSize) ' Reserve area

 ret = Lib1.GetAlarmInfo(e.dp, buf(0), recSize, e.handle)

 ' Get alarm information

 For i = 0 To recSize - 1

 ' Display the alarm determination result and alarm determination

 channel information on the debug window.

 Console.WriteLine("Alarm information=" + Hex(buf(i)))

 Next

 End If

 End If

End Sub

MoveMemory
Description
Copies the memory contents.

Syntax
MoveMemory(ByRef dstdt As Integer, srcdt As Integer, length As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
dstdt (OUT) Pointer to the copy destination buffer.
srcdt (IN) Pointer to the source data buffer. (Passes the address by value.)

length (IN) Data size

3.5 WeLib Class

3-95IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Example (Visual Basic .Net)
Private Sub AxWeEvent1_WeAlarm(ByVal sender As Object,

ByVal e As AxWEEVENTLib._DWeEventEvents_WeAlarmEvent)

Handles AxWeEvent1.WeAlarm

 Dim hMo As Integer

 Dim recSize As Integer

 Dim i As Integer

 Dim buf() As Integer

 ret = Lib1.GetHandle(e.handle, hMo) ' Get the handle

 If hMo = Module1.hMo Then

 Lib1.MoveMemory(recSize, e.dp, 4) ' Get the data size

 If recSize <> 0 Then

 ReDim buf(recSize) ' Reserve area

 ret = Lib1.GetAlarmInfo(e.dp, buf(0), recSize, e.handle)

 ' Get alarm information

 For i = 0 To recSize - 1

 ' Display the alarm determination result and alarm determination

 channel information on the debug window.

 Console.WriteLine("Alarm information=" + Hex(buf(i)))

 Next

 End If

 End If

End Sub

TransAcqData
Description
The GetAcqData method converts the acquisition data (raw data) retrieved using the GetAcqDataEx
method according to the data information. The data information can be retrieved using the

GetAcqDataInfo method. The raw data of some modules must be converted using this method. For a
Description of the modules that requires conversion, see the note.

Syntax
TransAcqData(chNum As Short, recsize As Integer, ByRef buf As SByte, ByRef info As AcqDataInfo) As

Short
TransAcqData(chNum As Short, recsize As Integer, ByRef buf As Byte, ByRef info As AcqDataInfo) As
Short

TransAcqData(chNum As Short, recsize As Integer, ByRef buf As Short, ByRef info As AcqDataInfo) As
Short
TransAcqData(chNum As Short, recsize As Integer, ByRef buf As UInt16, ByRef info As AcqDataInfo)

As Short
TransAcqData(chNum As Short, recsize As Integer, ByRef buf As Integer, ByRef info As AcqDataInfo)
As Short

TransAcqData(chNum As Short, recsize As Integer, ByRef buf As UInt32, ByRef info As AcqDataInfo)
As Short
TransAcqData(chNum As Short, recsize As Integer, ByRef buf As Single, ByRef info As AcqDataInfo)

As Short
TransAcqData(chNum As Short, recsize As Integer, ByRef buf As Double, ByRef info As AcqDataInfo)
As Short

TransAcqData(chNum As Short, recsize As Integer, ByRef buf As Long, ByRef info As AcqDataInfo) As
Short
TransAcqData(chNum As Short, recsize As Integer, ByRef buf As UInt64, ByRef info As AcqDataInfo)

As Short

3.5 WeLib Class

3-96 IM 707741-62E

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
chNum (IN) Number of channels (1 or greater)
recsize (IN) Data size (bytes) of the raw data received using GetAcqData/GetAcqDataEx

buf (IN/OUT) Stores the pointer to the raw data buffer (IN)/data after the conversion (OUT)
info (IN/OUT) Stores the pointer to the data information retrieved using GetAcqDataInfo (IN)/

the data information after conversion (OUT)

Note:
This method performs bit extraction and inversion on the acquisition data according to the StartBit and

EffectiveBit values in the data information, and then sets the type of data acquisition data after the
conversion (dataType) in the data information. The data size of the acquisition data type does not
change. (For example, change from WE_ULONG to WE_FLOAT is possible, but WE_ULONG to

WE_DOUBLE is not.)
The data that needs to be converted using this method is raw data retrieved using the GetAcqData
method or GetAcqDataEx method. The SaveAcqData method saves data that has been converted in

advance. Thus, the data does not need to be converted using this method.
Below are the modules that require the raw data to be converted using this method.
• WE7081: Performs bit extraction.

• WE7521: Performs inversion for frequency measurement data.

Example (Visual Basic .Net)
• Read and convert the data of all channels (when 4 channels are measured) on the WE7081
' Open the measuring station with the name "Station1."

ret = Station.OpenStation("Station1")

' Open the WE7081 module

ret = Module1.OpenModule(Station, "WE7081:1",1)

' Waiting for completion of data acquisition after starting measurement

Dim recSize As Integer

Dim info(3) As AcqDataInfo

Dim num As Short

' Allocate a buffer for a memory length of 1000 x 4ch

Dim buf(3999) As Double

' The number of bytes of buffer is 1000 x 4 x 8 bytes (WE_DOUBLE)

recSize = 1000*4*8

' Retrieve data information and raw data and convert the data

ret = Module1.GetAcqDataInfo(–1, 0, info(0), num)

ret = Module1.GetAcqData(–1, 0, recSize, buf(0))

ret = Lib1.TransAcqData(num, recSize, buf(0), info(0))

3.5 WeLib Class

3-97IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

• Read and convert the data of CH1 on the WE7521
' Open the measuring station with the name "Station1."

ret = Station.OpenStation("Station1")

' Open the WE7521 module

ret = Module1.OpenModule(Station, "WE7521:1",1)

' Waiting for completion of data acquisition after starting measurement

Dim recSize As Integer

Dim info As AcqDataInfo

Dim num As Short

' Allocate a buffer for a memory length of 1000 points

Dim buf(999)As Single

' The number of bytes of buffer is 1000 x 4 bytes (WE_FLOAT)

recSize = 1000*4

' Retrieve data information and raw data and convert the data

ret = Module1.GetAcqDataInfo(1, 0, info, num)

ret = Module1.GetAcqData(1, 0, recSize, buf(0))

ret = Lib1.TransAcqData(1, recSize, buf(0), info)

3.5 WeLib Class

3-98 IM 707741-62E

3.6 WeFilter Class

Description
This section describes the interface functions used to convert waveform data in wvf or csv format to the

arbitrary waveform or sweep waveform data formats for the 4-CH, 100 kS/s D/A Module WE7281.
These functions are used along with the WE Control API when transferring waveform data to the
WE7281 module.

Data format
The WE7281 uses data in the following formats.

Data format Description

s16 Arbitrary waveform data for the FG mode short x 65536
w32 Sweep waveform data for the FG mode UINT x 65536
w7281 Arbitrary waveform data for the AG mode (See figure below.)

DACData

Get size and
position from

DACChData and
DACData

CH1 BLOCK1
CH2 BLOCK1
CH3 BLOCK1

:
:

CH1 BLOCK2
CH2 BLOCK2
CH3 BLOCK2

:
:

short
WaveData

typedef struct

{

 float range ;

 int Data Length;

} DACChData;

typedef struct

{

 int Magic; //Substitute "DACS"=0x44414353

 unsigned byte chnum; //Number of channel

 unsigned byte blockNum; //Number of block

 unsigned byte pad[2]; //Padding

 double Sampling; //Sampling interval

} DACData ;

Wvf2S16GetSize
Description
Gets the byte size when waveform data retrieved using the specified parameter from the specified file
(wvf or csv format), are converted to the arbitrary waveform data format for the FG mode.

Syntax
Wvf2S16GetSize(filename As String, ch As Short, block As Integer, ByRef size As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
filename (IN) Name of the file containing the waveform data (wvf or csv format).

ch (IN) Channel number of the input file. The counting origin is one.
block (IN) Block number of the input file. The counting origin is zero.
size (OUT) Data size (byte size).

3-99IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Example (Visual Basic .Net)
Dim size As Integer

' Get the byte size when the Block0 data of CH1 of the wvf file

' saved by the WE7271 module are converted to the format used by

' the FG mode on the WE7281 module.

ret = Filter.Wvf2S16GetSize("c:\we7271.wvf", 1, 0, size)

Wvf2W32GetSize
Description
Gets the byte size when waveform data retrieved using the specified parameter from the specified file

(wvf or csv format) are converted to the sweep waveform data format for the FG mode.

Syntax
Wvf2W32GetSize(filename As String, ch As Short, block As Integer, ByRef size As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
filename (IN) Name of the file containing the waveform data (wvf or csv format).
ch (IN) Channel number of the input file. The counting origin is one.
block (IN) Block number of the input file. The counting origin is zero.

size (OUT) Data size (byte size).

Example (Visual Basic .Net)
Dim size As Integer

' Get the byte size when the Block0 data of CH1 of the wvf file

' saved by the WE7271 module are converted to the sweep waveform

' data format used by the FG mode on the WE7281 module.

ret = Filter.Wvf2W32GetSize("c:\we7271.wvf", 1, 0, size)

Wvf2W7281GetSize
Description
Gets the byte size when waveform data retrieved using the specified parameter from the specified file

(wvf or csv format), are converted to the arbitrary waveform data format for the AG mode.

Syntax
Wvf2W7281GetSize(filename As String, ch As Short, block As Integer, ByRef size As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
filename (IN) Name of the file containing the waveform data (wvf or csv format).
ch (IN) Channel number of the input file. The counting origin is one. Note that

“&H7FFF” represents all channels.

block (IN) Block number of the input file. The counting origin is zero. Note that
“&H7FFFFFFF” represents all blocks.

size (OUT) Data size (byte size).

3.6 WeFilter Class

3-100 IM 707741-62E

Example (Visual Basic .Net)
Dim size As Integer

' Get the byte size when the Block0 data of CH1 of the wvf file

' saved by the WE7271 module are converted to the format used by

' the AG mode on the WE7281 module.

ret = Filter.Wvf2W7281GetSize("c:\we7271.wvf", 1, 0, size)

Wvf2S16
Description
Converts waveform data retrieved using the specified parameter from the specified file (wvf or csv

format), to the arbitrary waveform data format for the FG mode.

Syntax
Wvf2S16(filename As String, ch As Short, block As Integer, ByRef buf As Short, ByRef size As Integer)
As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
filename (IN) Name of the file containing the waveform data (wvf or csv format).
ch (IN) Channel number of the input file. The counting origin is one.

block (IN) Block number of the input file. The counting origin is zero.
buf (OUT) Pointer to the data buffer.
size (IN/OUT) Data buffer size/Actual size of the data retrieved (byte size).

Example (Visual Basic .Net)
Dim size As Integer

' The byte size when the Block0 data of CH1 of the wvf file saved

' by the WE7271 module are converted to the s16 format used by the

' FG mode on the WE7281 module.

ret = Filter.Wvf2S16GetSize("c:\we7271.wvf", 1, 0, size)

' Allocate the buffer using the retrieved data size.

size = size/2

ReDim s16buf(size) As Short

' Convert the Block0 data of CH1 of the wvf file saved by the

' WE7271 module to the format used by the FG mode on the WE7281

' module.

ret = Filter.Wvf2S16("c:\we7271.wvf", 1, 0, s16buf(0), size)

' Transfer the converted data to CH1 of the WE7281 module.

ret = Module1.SetControl ("FG:CH1:Load ARB", s16buf)

Wvf2W32
Description
Converts waveform data retrieved using the specified parameter from the specified file (wvf or csv
format), to the sweep waveform data format for the FG mode.

Syntax
Wvf2W32(filename As String, ch As Short, block As Integer, ByRef buf As Integer, ByRef size As
Integer) As Short

3.6 WeFilter Class

3-101IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
filename (IN) Name of the file containing the waveform data (wvf or csv format).
ch (IN) Channel number of the input file. The counting origin is one.

block (IN) Block number of the input file. The counting origin is zero.
buf (OUT) Pointer to the data buffer.
size (IN/OUT) Data buffer size/Actual size of the data retrieved (byte size).

Example (Visual Basic .Net)
Dim size As Integer

' The byte size when the Block0 data of CH1 of the wvf file saved

' by the WE7271 module are converted to the w32 format used by the

' FG mode on the WE7281 module.

ret = Filter.Wvf2W32GetSize("c:\we7271.wvf", 1, 0, size)

' Allocate the buffer using the retrieved data size.

size = size/4

ReDim w32buf(size) As Integer

' Convert the Block0 data of CH1 of the wvf file saved by the

' WE7271 module to the format used by the FG mode on the WE7281

' module.

ret = Filter.WeWvf2W32("c:\we7271.wvf", 1, 0, w32buf(0), size)

' Transfer the converted data to CH1 of the WE7281 module.

ret = Module1.WeSetControl ("FG:CH1:Load ARB", w32buf)

Wvf2W7281
Description
Converts waveform data retrieved using the specified parameter from the specified file (wvf or csv
format), to the arbitrary waveform data format for the AG mode.

Syntax
Wvf2W7281(filename As String, ch As Short, block As Integer, ByRef buf As Byte, ByRef size As
Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
filename (IN) Name of the file containing the waveform data (wvf or csv format).
ch (IN) Channel number of the input file. The counting origin is one. Note that

“&H7FFF” represents all channels.

block (IN) Block number of the input file. The counting origin is zero. Note that
“&H7FFFFFFF” represents all channels.

buf (OUT) Pointer to the data buffer.

size (IN/OUT) Data buffer size/Actual size of the data retrieved (byte size).

3.6 WeFilter Class

3-102 IM 707741-62E

Example (Visual Basic .Net)
Dim size As Integer

' The byte size when the Block0 data of CH1 of the wvf file saved

' by the WE7271 module are converted to the format used by the

' AG mode on the WE7281 module.

ret = Filter.Wvf2W7281GetSize("c:\we7271.wvf", 1, 0, size)

' Allocate the buffer using the retrieved data size.

ReDim w7281buf(size) As Byte

' Convert the Block0 data of CH1 of the wvf file saved by the

' WE7271 module to the format used by the AG mode on the WE7281

' module.

ret = Filter.Wvf2W7281("c:\we7271.wvf", 1, 0, w7281buf(0), size)

' Transfer the converted data to CH1 of the WE7281 module.

ret = Module1.SetControl ("AG:Misc:Load Data", w7281buf)

3.6 WeFilter Class

3-103IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

3.7 WeFile Class

HeaderReadS
Description
Reads the data from the header file by specifying the block number.

Syntax
HeaderReadS(FileName As String, BlockNo As Integer, ByRef ComBuff As CommonInf1, ChBuff() As

ChanelInf1) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
FileName (IN) Header file name.

BlockNo (IN) Block number. Specify the block number you wish to read.
ComBuff() (OUT) Common information structure. Define using an array.
ChBuff() (OUT) Channel information structure. Define using an array.

Note:
Collectively retrieves the header file information for data of which the number of X-axis data points is

the same. Prepare a single-element array for the common information structure buffer. Prepare
channel information structure buffer for the amount equal to the number of channels.

Example (Visual Basic .Net)
Dim FileName As String

Dim BlockNo As Integer

Dim ComBuff As CommonInf1

Dim ChBuff(3) As ChanelInf1

FileName = "TestData1"

BlockNo = 2

ret = File.HeaderReadS(FileName,BlockNo,ComBuff,ChBuff)

If 0 <> ret Then

 MsgBox "File read error"

End If

3-104 IM 707741-62E

DataRead
Description
Reads the data from the data file by specifying the block number.

Syntax
DataRead(FileName As String,BlockNo As Integer,ChNo As Integer,DataBuff() As SByte) As Short
DataRead(FileName As String,BlockNo As Integer,ChNo As Integer,DataBuff(,) As SByte) As Short

DataRead(FileName As String,BlockNo As Integer,ChNo As Integer,DataBuff() As Byte) As Short
DataRead(FileName As String,BlockNo As Integer,ChNo As Integer,DataBuff(,) As Byte) As Short
DataRead(FileName As String,BlockNo As Integer,ChNo As Integer,DataBuff() As Short) As Short

DataRead(FileName As String,BlockNo As Integer,ChNo As Integer,DataBuff(,) As Short) As Short
DataRead(FileName As String,BlockNo As Integer,ChNo As Integer,DataBuff() As UInt16) As Short
DataRead(FileName As String,BlockNo As Integer,ChNo As Integer,DataBuff(,) As UInt16) As Short

DataRead(FileName As String,BlockNo As Integer,ChNo As Integer,DataBuff() As Integer) As Short
DataRead(FileName As String,BlockNo As Integer,ChNo As Integer,DataBuff(,) As Integer) As Short
DataRead(FileName As String,BlockNo As Integer,ChNo As Integer,DataBuff() As UInt32) As Short

DataRead(FileName As String,BlockNo As Integer,ChNo As Integer,DataBuff(,) As UInt32) As Short
DataRead(FileName As String,BlockNo As Integer,ChNo As Integer,DataBuff() As Single) As Short
DataRead(FileName As String,BlockNo As Integer,ChNo As Integer,DataBuff(,) As Single) As Short

DataRead(FileName As String,BlockNo As Integer,ChNo As Integer,DataBuff() As Double) As Short
DataRead(FileName As String,BlockNo As Integer,ChNo As Integer,DataBuff(,) As Double) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
FileName (IN) Data file name. Specify the file name excluding the extension.
BlockNo (IN) Block number.
ChNo (IN) Channel number. -1 represents all channels. Counted from 1.

If you specify -1, pass a buffer defined using a two-dimensional array for
DataBuff.

DataBuff (OUT) Data storage buffer. Pass the buffer in the type specified by DataForm.

Note:
Reads the data from the data file in units of blocks. The files cannot be handled as sequential files.

Example (Visual Basic .Net)
Dim FileName As String

Dim BlockNo As Integer

Dim ChNo As Integer

Dim DataBuff(3,999) As Single

FileName = "TestData1"

BlockNo = 2

ChNo = -1

ret = File.DataRead(FileName,BlockNo,ChNo,DataBuff)

If 0 <> ret Then

 MsgBox "File read error"

End If

3.7 WeFile Class

3-105IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

HeaderWriteS
Description
Writes the header information at once to the header file by specifying the block.

Syntax
HeaderWriteS(FileName As String,BlockNo As Integer,ByRef ComBuff As CommonInf1, ChBuff() As
ChanelInf1, AcqInfo() As AcqDataInfEx2) As Short

HeaderWriteS(FileName As String,BlockNo As Integer,ByRef ComBuff As CommonInf1, ChBuff() As
ChanelInf1, AcqInfoEx() As AcqDataInfEx) As Short (old interface)

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
FileName (IN) Header file name.
BlockNo (IN) Block number. Specify the block number to be written.
ComBuff() (IN) Common information structure. Define using an array.

ChBuff() (IN) Channel information structure. Define using an array.
AcqInfo (IN) Data information structure (AcqDataInfoEx2).
AcqInfoEx (IN) Data information structure (AcqDataInfoEx).

Note:
Collectively writes the header file information for data of which the number of X-axis data points is the

same. Prepare a single-element array for the common information structure buffer. Prepare channel
information structure buffer for the amount equal to the number of channels. Pass the data obtained by
GetAcqDataInfoEx() or AcqInfoInitialize() to AcqData. Data is written to the specified block. (The old

interface does not have Date, Time, vUnit, and xUnit.)

Example (Visual Basic .Net)
Dim FileName As String

Dim BlockNo As Integer

Dim ComBuff As CommonInf1

Dim ChBuff(5) As ChanelInf1

Dim AcqInfo(5) As AcqDataInfoEx2

Dim InfoNum As Short

BlockNo=2

Ret = Module1.GetAcqDataInfo(-1,BlockNo,AcqInfo(),infoNum)

If 0 <> ret Then

 MsgBox "Data information read error"

EndIf

FileName = "TestData1"

ret = File.HeaderWriteS(FileName,BlockNo,ComBuff,ChBuff,AcqInfo)

If 0 <> ret Then

 MsgBox "File write error"

End If

3.7 WeFile Class

3-106 IM 707741-62E

DataWrite
Description
Writes the data to the data file in units of blocks.

Syntax
DataWrite(FileName As String,BlockNo As Integer, DataBuff() As SByte) As Short
DataWrite(FileName As String,BlockNo As Integer, DataBuff(,) As SByte) As Short

DataWrite(FileName As String,BlockNo As Integer, DataBuff() As Byte) As Short
DataWrite(FileName As String,BlockNo As Integer, DataBuff(,) As Byte) As Short
DataWrite(FileName As String,BlockNo As Integer, DataBuff() As Short) As Short

DataWrite(FileName As String,BlockNo As Integer, DataBuff(,) As Short) As Short
DataWrite(FileName As String,BlockNo As Integer, DataBuff() As UInt16) As Short
DataWrite(FileName As String,BlockNo As Integer, DataBuff(,) As UInt16) As Short

DataWrite(FileName As String,BlockNo As Integer, DataBuff() As Integer) As Short
DataWrite(FileName As String,BlockNo As Integer, DataBuff(,) As Integer) As Short
DataWrite(FileName As String,BlockNo As Integer, DataBuff() As UInt32) As Short

DataWrite(FileName As String,BlockNo As Integer, DataBuff(,) As UInt32) As Short
DataWrite(FileName As String,BlockNo As Integer, DataBuff() As Single) As Short
DataWrite(FileName As String,BlockNo As Integer, DataBuff(,) As Single) As Short

DataWrite(FileName As String,BlockNo As Integer, DataBuff() As Double) As Short
DataWrite(FileName As String,BlockNo As Integer, DataBuff(,) As Double) As Short

Old interface
DataWrite(FileName As String,BlockNo As Integer, SampleNum As Integer, AcqInfo() As
AcqDataInfoEx, DataBuff() As SByte) As Short
DataWrite(FileName As String,BlockNo As Integer, SampleNum As Integer, AcqInfo() As

AcqDataInfoEx, DataBuff(,) As SByte) As Short
DataWrite(FileName As String,BlockNo As Integer, SampleNum As Integer, AcqInfo() As
AcqDataInfoEx, DataBuff() As Byte) As Short
DataWrite(FileName As String,BlockNo As Integer, SampleNum As Integer, AcqInfo() As

AcqDataInfoEx, DataBuff(,) As Byte) As Short
DataWrite(FileName As String,BlockNo As Integer, SampleNum As Integer, AcqInfo() As
AcqDataInfoEx, DataBuff() As Short) As Short

DataWrite(FileName As String,BlockNo As Integer, SampleNum As Integer, AcqInfo() As
AcqDataInfoEx, DataBuff(,) As Short) As Short
DataWrite(FileName As String,BlockNo As Integer, SampleNum As Integer, AcqInfo() As

AcqDataInfoEx, DataBuff() As UInt16) As Short
DataWrite(FileName As String,BlockNo As Integer, SampleNum As Integer, AcqInfo() As
AcqDataInfoEx, DataBuff(,) As UInt16) As Short

DataWrite(FileName As String,BlockNo As Integer, SampleNum As Integer, AcqInfo() As
AcqDataInfoEx, DataBuff() As Integer) As Short
DataWrite(FileName As String,BlockNo As Integer, SampleNum As Integer, AcqInfo() As

AcqDataInfoEx, DataBuff(,) As Integer) As Short
DataWrite(FileName As String,BlockNo As Integer, SampleNum As Integer, AcqInfo() As
AcqDataInfoEx, DataBuff() As UInt32) As Short

DataWrite(FileName As String,BlockNo As Integer, SampleNum As Integer, AcqInfo() As
AcqDataInfoEx, DataBuff(,) As UInt32) As Short
DataWrite(FileName As String,BlockNo As Integer, SampleNum As Integer, AcqInfo() As

AcqDataInfoEx, DataBuff() As Single) As Short
DataWrite(FileName As String,BlockNo As Integer, SampleNum As Integer, AcqInfo() As
AcqDataInfoEx, DataBuff(,) As Single) As Short

DataWrite(FileName As String,BlockNo As Integer, SampleNum As Integer, AcqInfo() As
AcqDataInfoEx, DataBuff() As Double) As Short
DataWrite(FileName As String,BlockNo As Integer, SampleNum As Integer, AcqInfo() As

AcqDataInfoEx, DataBuff(,) As Double) As Short

3.7 WeFile Class

3-107IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
FileName (IN) Data file name. Specify the file name excluding the extension. A .wvf extension

is added to the created file.

BlockNo (IN) Block number.
DataBuff (OUT) Data storage buffer.

Note:
Write data to a data file. The files cannot be handled as sequential files.

Example (Visual Basic .Net)
Dim FileName As String

Dim BlockNo As Integer

Dim AcqInfo(1) As AcqDataInfoEx2

Dim DataBuff(999,1) As Single

Dim InfoNum As Integer

BlockNo = 2

Module1.GetAcqDataInfo(-1,BlockNo,AcqInfo(),InfoNum)

FileName = "TestData1"

ret = File.DataWrite(FileName,BlockNo,DataBuff)

If 0 <> ret Then

 MsgBox "File write error"

End If

HeaderCsReadS
Description
Collectively reads the header information from a header file.

Syntax
HeaderCsReadS(FileName As String,SeriesNo As Integer,ByRef ComBuff As CommonInf1, ChBuff()
As ChanelInf1) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
FileName (IN) Header file name.

SeriesNo (IN) Sequence number when creating sequence files. If you specify -1, FileName
becomes the file name as-is.

ComBuff (OUT) Common information structure.

ChBuff() (OUT) Channel information structure. Define using an array.

Note:
Collectively retrieves the header file information for data of which the number of X-axis data points is
the same. Prepare a single-element array for the common information structure buffer.
Prepare channel information structure buffer for the amount equal to the number of channels.

3.7 WeFile Class

3-108 IM 707741-62E

Example (Visual Basic .Net)
Dim FileName As String

Dim SeriesNo As Integer

Dim ComBuff As CommonInf1

Dim ChBuff(5) As ChanelInf1

FileName = "TestData1"

SeriesNo = 2

ret = File.HeaderCsReadS(FileName,SeriesNo,ComBuff,ChBuff)

If 0 <> ret Then

 MsgBox "File read error"

End If

CsRead
Description
Reads the data from the data files (sequential files) by specifying the number of samples.

Syntax
CsRead(FileName As String,SeriesNo As Integer,Start As Integer,Length As Integer, ChNo As Integer,

DataBuff() As SByte) As Short
CsRead(FileName As String,SeriesNo As Integer,Start As Integer,Length As Integer, ChNo As Integer,
DataBuff(,) As SByte) As Short

CsRead(FileName As String,SeriesNo As Integer,Start As Integer,Length As Integer, ChNo As Integer,
DataBuff() As Byte) As Short
CsRead(FileName As String,SeriesNo As Integer,Start As Integer,Length As Integer, ChNo As Integer,

DataBuff(,) As Byte) As Short
CsRead(FileName As String,SeriesNo As Integer,Start As Integer,Length As Integer, ChNo As Integer,
DataBuff() As Short) As Short
CsRead(FileName As String,SeriesNo As Integer,Start As Integer,Length As Integer, ChNo As Integer,

DataBuff(,) As Short) As Short
CsRead(FileName As String,SeriesNo As Integer,Start As Integer,Length As Integer, ChNo As Integer,
DataBuff() As UInt16) As Short

CsRead(FileName As String,SeriesNo As Integer,Start As Integer,Length As Integer, ChNo As Integer,
DataBuff(,) As UInt16) As Short
CsRead(FileName As String,SeriesNo As Integer,Start As Integer,Length As Integer, ChNo AsInteger,

DataBuff() As Integer) As Short
CsRead(FileName As String,SeriesNo As Integer,Start As Integer,Length As Integer, ChNo As Integer,
DataBuff(,) As Integer) As Short

CsRead(FileName As String,SeriesNo As Integer,Start As Integer,Length As Integer, ChNo As Integer,
DataBuff() As UInt32) As Short
CsRead(FileName As String,SeriesNo As Integer,Start As Integer,Length As Integer, ChNo As Integer,

DataBuff(,) As UInt32) As Short
CsRead(FileName As String,SeriesNo As Integer,Start As Integer,Length As Integer, ChNo As Integer,
DataBuff() As Single) As Short

CsRead(FileName As String,SeriesNo As Integer,Start As Integer,Length As Integer, ChNo As Integer,
DataBuff(,) As Single) As Short
CsRead(FileName As String,SeriesNo As Integer,Start As Integer,Length As Integer, ChNo As Integer,

DataBuff() As Double) As Short
CsRead(FileName As String,SeriesNo As Integer,Start As Integer,Length As Integer, ChNo As Integer,
DataBuff(,) As Double) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

3.7 WeFile Class

3-109IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Parameters
FileName (IN) Data file name. Specify the file name excluding the extension.
SeriesNo (IN) Sequence number when reading sequential files. If you specify -1, only the file

with the name specified by FileName is read.

Start (IN) Start sample number. Specify the first sample number to be retrieved using a
value greater than or equal to 0.

Length (IN) Number of samples to be retrieved. -1 specifies all data after the sample

specified by Start. An error occurs if the specified value is greater than the
number of samples that is stored.

ChNo (IN) Channel number. One origin. -1 specifies all channels.

DataBuff (OUT) Buffer for storing data. Pass the buffer in the type specified by DataForm.

Note:
Reads the data from the data file by specifying the number of samples.
Retrieves data of Length from sample Start in the file specified by FileName and SeriesNo.

Example (Visual Basic .Net)
Dim FileName As String

Dim SeriesNo As Integer

Dim Start As Integer

Dim Length As Integer

Dim ChNo As Integer

Dim DataBuff(3,1199) As Single

FileName = "TestData1"

SeriesNo = 2

Start = 100

Length = 1200

ChNo = -1

ret = File.CsRead(FileName,SeriesNo,Start,Length,ChNo,DataBuff)

If 0 <> ret Then

 MsgBox "File read error"

End If

HeaderCsWriteS
Description
Collectively writes the header information to the header file.

Syntax
HeaderCsWriteS(FileName As String,SeriesNo As Integer , ByRef ComBuff As CommonInf1,ChBuff()
As ChanelInf1,AcqInfo() As AcqDataInfoEx2)
HeaderCsWriteS(FileName As String,SeriesNo As Integer , ByRef ComBuff As CommonInf1,ChBuff()
As ChanelInf1,AcqInfo() As AcqDataInfoEx) (old interface)

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

3.7 WeFile Class

3-110 IM 707741-62E

Parameters
FileName (IN) Header file name.
SeriesNo (IN) Sequence number when creating sequence files. If you specify -1, FileName

becomes the file name as-is.

CommBuff (IN) Common information structure.
ChBuff() (IN) Channel information structure. Define using an array.
AcqInfo (IN) Data information structure. Define using an array.

Note:
Collectively writes the header file information for data of which the number of X-axis data points is the

same. Prepare a single-element array for the common information structure buffer.
Prepare channel information structure buffer for the amount equal to the number of channels.
Pass the data obtained by GetAcqDataInfo() or AcqInfoInitialize() to AcqData.

If the file already exists, it is overwritten.

Example (Visual Basic .Net)
Dim ret As Long

Dim FileName As String

Dim SeriesNo As Integer

Dim CommonBuff As CommonInf1

Dim ChBuff(5) As ChanelInf1

Dim AcqInfo(5) As AcqDataInfoEx2

Dim InfoNum As Long

Ret = Module1.GetAcqDataInfo(-1,5,AcqInfo,infoNum)

If 0 <> ret Then

 MsgBox "Data information read error"

End If

FileName = "TestData1"

SeriesNo = 2

ret = File.HeaderCsWriteS(FileName,SeriesNo,CommonBuff,ChBuff,AcqInfo)

If 0 <> ret Then

 MsgBox "File write error"

End If

3.7 WeFile Class

3-111IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

CsWrite
Description
Write data to a sequence file.

Syntax
CsWrite(FileName As String,SeriesNo As Integer, DataBuff() As SByte) As Short
CsWrite(FileName As String,SeriesNo As Integer, DataBuff(,) As SByte) As Short

CsWrite(FileName As String,SeriesNo As Integer, DataBuff() As Byte) As Short
CsWrite(FileName As String,SeriesNo As Integer, DataBuff(,) As Byte) As Short
CsWrite(FileName As String,SeriesNo As Integer, DataBuff() As Short) As Short

CsWrite(FileName As String,SeriesNo As Integer, DataBuff(,) As Short) As Short
CsWrite(FileName As String,SeriesNo As Integer, DataBuff() As UInt16) As Short
CsWrite(FileName As String,SeriesNo As Integer, DataBuff(,) As UInt16) As Short

CsWrite(FileName As String,SeriesNo As Integer, DataBuff() As Integer) As Short
CsWrite(FileName As String,SeriesNo As Integer, DataBuff(,) As Integer) As Short
CsWrite(FileName As String,SeriesNo As Integer, DataBuff() As UInt32) As Short

CsWrite(FileName As String,SeriesNo As Integer, DataBuff(,) As UInt32) As Short
CsWrite(FileName As String,SeriesNo As Integer, DataBuff() As Single) As Short
CsWrite(FileName As String,SeriesNo As Integer, DataBuff(,) As Single) As Short

CsWrite(FileName As String,SeriesNo As Integer, DataBuff() As Double) As Short
CsWrite(FileName As String,SeriesNo As Integer, DataBuff(,) As Double) As Short

Old interface
CsWrite(FileName As String,SeriesNo As Integer,SampleNum As Integer, AcqInfo() As AcqDataInfoEx,
DataBuff() As SByte) As Short
CsWrite(FileName As String,SeriesNo As Integer,SampleNum As Integer, AcqInfo() As AcqDataInfoEx,

DataBuff(,) As SByte) As Short
CsWrite(FileName As String,SeriesNo As Integer,SampleNum As Integer, AcqInfo() As AcqDataInfoEx,
DataBuff() As Byte) As Short
CsWrite(FileName As String,SeriesNo As Integer,SampleNum As Integer, AcqInfo() As AcqDataInfoEx,

DataBuff(,) As Byte) As Short
CsWrite(FileName As String,SeriesNo As Integer,SampleNum As Integer, AcqInfo() As AcqDataInfoEx,
DataBuff() As Short) As Short

CsWrite(FileName As String,SeriesNo As Integer,SampleNum As Integer, AcqInfo() As AcqDataInfoEx,
DataBuff(,) As Short) As Short
CsWrite(FileName As String,SeriesNo As Integer,SampleNum As Integer, AcqInfo() As AcqDataInfoEx,

DataBuff() As UInt16) As Short
CsWrite(FileName As String,SeriesNo As Integer,SampleNum As Integer, AcqInfo() As AcqDataInfoEx,
DataBuff(,) As Uint16) As Short

CsWrite(FileName As String,SeriesNo As Integer,SampleNum As Integer, AcqInfo() As AcqDataInfoEx,
DataBuff() As Integer) As Short
CsWrite(FileName As String,SeriesNo As Integer,SampleNum As Integer, AcqInfo() As AcqDataInfoEx,

DataBuff(,) As Integer) As Short
CsWrite(FileName As String,SeriesNo As Integer,SampleNum As Integer, AcqInfo() As AcqDataInfoEx,
DataBuff() As UInt32) As Short

CsWrite(FileName As String,SeriesNo As Integer,SampleNum As Integer, AcqInfo() As AcqDataInfoEx,
DataBuff(,) As UInt32) As Short
CsWrite(FileName As String,SeriesNo As Integer,SampleNum As Integer, AcqInfo() As AcqDataInfoEx,

DataBuff() As Single) As Short
CsWrite(FileName As String,SeriesNo As Integer,SampleNum As Integer, AcqInfo() As AcqDataInfoEx,
DataBuff(,) As Single) As Short

CsWrite(FileName As String,SeriesNo As Integer,SampleNum As Integer, AcqInfo() As AcqDataInfoEx,
DataBuff() As Double) As Short
CsWrite(FileName As String,SeriesNo As Integer,SampleNum As Integer, AcqInfo() As AcqDataInfoEx,

DataBuff(,) As Double) As Short

3.7 WeFile Class

3-112 IM 707741-62E

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
FileName (IN) Data file name. Specify the file name excluding the extension. A .wvf extension

is added to the created file.

SeriesNo (IN) Sequence number when creating sequence files. If you specify -1, FileName
becomes the file name as-is.

SampleNum (IN) Number of samples.

AcqInfo (IN) Data information structure. Pass the data that has been returned by
GetAcqDataInfo() or DPInitializeAcqInfo().

DataBuff (OUT) Data storage buffer.

Note:
Write data to a data file.

The files are handled as sequential files. SeriesNo is automatically added to the file names.

Example (Visual Basic .Net)
Dim FileName As String

Dim SeriesNo As integer

Dim DataBuff(1,1000) As Single

FileName = "TestData1"

SeriesNo = 2

ret = File.CsWrite(FileName, SeriesNo,DataBuff)

If 0 <> ret Then

 MsgBox "File write error"

End If

HeaderItemRead
Description
Reads the information of the specified item name and specified channel from the header information of
the header file.

Syntax
HeaderItemRead(FileName As String, ItemName As String, ChNo As Integer, BlockNo As Integer,

ByRef DataBuff As String) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
FileName (IN) Data file name. Specify the file name excluding the extension.

ItemName (IN) Item name.
ChNo (IN) Channel number. Ignored if an item unrelated to the channel number is

specified.

BlockNo (IN) Block number.
DataBuff (OUT) Buffer for storing data.

3.7 WeFile Class

3-113IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

Note:
Retrieves the information of the specified item and specified channel from the header file information.

You must have an understanding of the structure of the .hdr file when using this function.
A block number is added to the item number for data containing multiple blocks. To read such item,
specify the item name with the block number.

Items “GroupNumber” and “TraceNumber” cannot be retrieved.

Example (Visual Basic .Net)
Dim FileName As String

Dim ItemName As String

Dim ChNo As Integer

Dim DataBuff As String

Dim BlockNo As Integer

FileName = "TestData"

ItemName = "VResolution"

ChNo = 1

BlockNo = 0

Ret = File.HeaderItemRead(FileName,ItemName,ChNo,BlockNo,DataBuff)

If 0 <> ret Then

 MsgBox "Error in reading a header file item"

End If

HeaderItemWrite
Description
Writes data to the specified item name and specified channel in the header information of the header
file.

Syntax
HeaderItemWrite(FileName As String, ItemName As String, ChNo As Integer, BlockNo As Integer,
DataBuff As String) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
FileName (IN) Data file name. Specify the file name excluding the extension.
ItemName (IN) Item name.
ChNo (IN) Channel number.

BlockNo (IN) Block number.
DataBuff (OUT) Buffer for storing data.

Note:
Writes data to the specified item and specified channel in the header information file.
Items “FormatVersion,” “Model,” “Endian,” “DataFormat,” “GroupNumber,” “TraceTotalNumber,”

“TraceName,” “BlockNumber,” and “VDataType” cannot be specified.
When you set PLinearMode, set to “0” as OFF or “1” as ON.
If PlinearMode is set to 1, the data value is displayed using a value converted by the Linear scale value

when the corresponding file is viewed on the Control Software Viewer.

3.7 WeFile Class

3-114 IM 707741-62E

Example (Visual Basic .Net)
Dim FileName As String

Dim ItemName As String

Dim ChNo As Integer

Dim BlockNo As Integer

Dim DataBuff As String

FileName = "TestData"

ItemName = "VResolution"

ChNo = 1

BlockNo = 0

DataBuff = CStr(5.42)

Ret = File.HeaderItemWrite(FileName,ItemName,ChNo,BlockNo,DataBuff)

If 0 <> ret Then

 MsgBox "Error in reading a header file item"

End If

GetSampleChNum
Description
Gets the number of samples and number of channels of the specified file.

Syntax
GetSampleChNum(FileName As String, BlockNo As Integer, ByRef SampleNum As Integer,ByRef
ChNum As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
FileName (IN) Data file name. Specify the file name excluding the extension.

BlockNo (IN) Block number. -1 specifies all blocks.
SampleNum (OUT) Number of samples.
ChNum (OUT) Number of channels.

Note:
The number of samples and number of channels of the specified file are returned.

For Scan type files, the total number of samples is returned regardless of the BlockNo setting.

Example (Visual Basic .Net)
Dim FileName As String

Dim BlockNo As Integer

Dim SampleNum As Integer

Dim ChNum As Integer

FileName = "TestData"

BlockNo = 0

ret = File.GetSampleChNum(FileName,SampleNum,ChNum)

If 0 <> ret Then

 MsgBox "Error in reading the number of samples and number of channels"

End If

3.7 WeFile Class

3-115IM 707741-62E

D
etailed

 E
xp

lan
atio

n
 o

f C
lasses

3

GetBlockNum
Description
Gets the number of blocks of the specified file.

Syntax
GetBlockNum(FileName As String,ByRef BlockNum As Integer) As Short

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
FileName (IN) Data file name. Specify the file name excluding the extension.
BlockNum (OUT) Number of blocks.

Note:
The number of blocks of the specified file is returned.

Example (Visual Basic .Net)
Dim FileName As String

Dim BlockNum As Long

FileName = "TestData"

ret = File.GetBlockNum(FileName,BlockNum)

If 0 <> ret Then

 MsgBox "Error in reading the number of blocks"

End If

InitializeAcqInfo
Description
Stores the required data in the data information structure.

Syntax
InitializeAcqInfo(VMaxData AsDouble, VMinData As Double, SampleNum As Integer, SampInterval As
Double, AcqInfo() As AcqDataInfoEx2)

(Old interface)
InitializeAcqInfo(VMaxData AsDouble, VMinData As Double, SampleNum As Integer, SampInterval As
Double, AcqInfoEx() As AcqDataInfoEx)

Return value
Returns 0 if successful. Returns an error code if unsuccessful.

Parameters
VMaxData (IN) Scale Max.
VMinData (IN) Scale Min.

SampleNum (IN) Number of samples.
SampInterval (IN) Sampling interval (s).
AcqInfo() (OUT) Data information structure.

AcqInfoEx() (OUT) Data information structure. (for old interface)

3.7 WeFile Class

3-116 IM 707741-62E

Note:
Sets and returns the required data in the data information structure.

VMaxData and VMinData are the scale values of the Y-axis when the measured data in the stored file
is displayed using the Waveform Monitor of the WE7000 Control Software.
The data set in AcqDataInfo by this function is as follows:

Chanel 1 through n is set in the order of the array.
dataType Data buffer type is set using the parameter of DataWrite or CsWrite.
blockNum 1

startBit 0
effectiveBit 0
trigActive 0

record SampleNum.
recordLen SampleNum.
time 0

trigPosition 0.0
Interval Set to the SamplingInterval parameter.
VResolution Set to 1.0.

VOffset Set to 0.0.
TrigLevel Set to 0.0.
TrigWidth Set to 0.0.

PlusOverData Set to the VMaxData parameter.
MinusOverData Set to the VMinData parameter.
NonData Set to the lost data.

DispMaxData Set to the VMaxData parameter.
DispMinData Set to the VMinData parameter.
Date Date when this function was called (do not set anything on the old interface.)

Time Time when this function was called (do not set anything on the old interface.)
Vunit Sets “V” (do not set anything on the old interface.)
Xunit Sets “See” (do not set anything on the old interface.)

Example (Visual Basic .Net)
Dim VMaxData As Double

Dim VMinData As Double

Dim AcqInfo(3) As AcqDataInfoEx2

VMaxData = 2.0

VMinData = –2.0

ret = File.InitializeAcqInfo(VMaxData,VMinData,1000,0.001,AcqInfo)

If 0 <> ret Then

 MsgBox "Error in setting data to data information structure"

End If

3.7 WeFile Class

4-1IM 707741-62E

E
rro

r C
o

d
es

4

4.1 Error Codes

WeControl, WeStation, WeModule Class
Controller Side
Error Code (Hexadecimal) Description

1 to 19 (0x1 to x13) Communication driver error codes.

100 (0x64) Failed initialization.
101 (0x65) Buffer is full.
102 (0x66) No communication interface board.
103 (0x67) Station does not exist.
104 (0x68) Event receive error.
105 (0x69) Abnormal interrupt.
106 (0x6A) Abnormal received packet.
107 (0x6B) Buffer size too small.

110 (0x6E) Requested reply packet not received.
111 (0x6F) RplySyncExec API error.
112 (0x70) SettingQuery API error.
113 (0x71) Cannot process segmented packets.
114 (0x72) No such function.
115 (0x73) Not all segmented packets have been received.

200 (0xC8) Execution error on station.
201 (0xC9) Execution error on module.
202 (0xCA) No station name.
203 (0xCB) Duplicate station names.
204 (0xCC) Bad station name.
205 (0xCD) Module does not exist.
206 (0xCE) Bad module name.
207 (0xCF) Invalid slot specification.

300 (0x12C) Function not supported.
301 (0x12D) Function not supported.
302 (0x12E) Acquisition data does not exist.

400 (0x190) Failed to allocate dynamic memory.
401 (0x191) Failed in sending messages between threads.
402 (0x192) Failed to create thread.
403 (0x193) File open error.
404 (0x194) File read/write error.
405 (0x195) File access error.

500 (0x1F4) Handle error.
501 (0x1F5) ASCII command cannot be found.
502 (0x1F6) Bad parameter.
503 (0x1F7) Cannot open the module handle of a child.
504 (0x1F8) Invalid setting.

Chapter 4 Error Codes

4-2 IM 707741-62E

Common Error Codes for the Station and Modules
Error Code (Hexadecimal) Description

4097 (0x1001) Parameter unnecessary.
4098 (0x1002) Value was limited.
4099 (0x1003) Over the range.
4100 (0x1004) Lost preset information.
8193 (0x2001) Bad module ID.
8194 (0x2002) Bad control ID.
8195 (0x2003) Bad command ID.
8196 (0x2004) Parameter necessary.
8197 (0x2005) Parameter type different.
8198 (0x2006) Too many parameters.
8199 (0x2007) Not enough parameters.
8200 (0x2008) Setting conflict.
8201 (0x2009) Hardware not installed.
8202 (0x200A) Program error.
8203 (0x200B) Lost calibration value.
8204 (0x200C) Failed self test.
8205 (0x200D) Failed calibration.
8206 (0x200E) Data exceeds the range.
8207 (0x200F) Failed measurement.
8208 (0x2010) Hardware error.
8209 (0x2011) Temperature error.
8210 (0x2012) Cooling fan stopped.
8211 (0x2013) System memory overflow.
8212 (0x2014) Bad data base format.
8213 (0x2015) Bad data base version.
8214 (0x2016) Bad handle was provided.
8215 (0x2017) Failed to get handle.
8216 (0x2018) Measurement aborted.
8217 (0x2019) No measurement data.
8218 (0x201A) Timeout.
8219 (0x201B) Data overrun occurred.
8225 to 8232 (0x202#) Program error in SLOT# (#: Slot number 1 to 8).
8241 to 8248 (0x203#) Bad version in SLOT# (#: Slot number 1 to 8).

WeFilter Class
Symbol Error Code Description

(Hexadecimal)

AsciiRSLT_NORMAL 0 (0x0000) Normal termination.
AsciiRSLT_CANT_OPEN 1 (0x0001) Failed to open file.
AsciiRSLT_CANT_ALLOC 2 (0x0002) Failed to allocate memory.
AsciiRSLT_CANT_READ 9 (0x0009) Failed to retrieve data (includes “?,” for

example).Vresolution,
Voffset, VUnit, VPlusOverData,
VminusOverData, VillegalData,
VMaxData, VMinData,
Hresolution, HUnit, Data, Time.

AsciiRSLT_BOUNDARY 10 (0x000A) Boundary specification error.
AsciiRSLT_READ_ERROR 11 (0x000B) Access error to the wvf file.
AsciiRSLT_LINK_ERROR 13 (0x000D) Failed to link to the DLL.
AsciiRSLT_UNSUPPORTED_FUNCTION 14 (0x000E) Function not supported by this DLL.
AsciiRSLT_ZERO_BLOCKSIZE 15 (0x000F) Block size is zero.
AsciiRSLT_ERROR 255 (0x00FF) Other error.

4.1 Error Codes

4-3IM 707741-62E

E
rro

r C
o

d
es

4

WeFile Class
Symbol Error Code Description

(Hexadecimal)

AsciiRSLT_NORMAL 0x0000 Normal completion.
AsciiRSLT_CANT_OPEN 0x0001 File open failure.
AsciiRSLT_CANT_ALLOC 0x0002 Memory allocation failure.
AsciiRSLT_FORMAT_ERROR 0x0003 The number of fields of the record is not

correct.
AsciiRSLT_HANDLE_NULL 0x0004 NULL handle.
AsciiRSLT_NOT_INTEGER 0x0005 The data type is not UINT. GroupNumber,

TraceTotalNumber, DataOffset, TraceNumber,
BlockNumber, and BlockSize are UINT.

AsciiRSLT_POSITION_ERROR 0x0006 Description position is not correct. For
example, a Group item is in PublicInfo.

AsciiRSLT_SCRIPT_ERROR 0x0007 Error in the item descriptor. For example,
BlockSizeA.

AsciiRSLT_STRING_ERROR 0x0008 Error in Endian or DataFormat.
Endian: Little or Big
DataFormat: Trace or Block

AsciiRSLT_CANT_READ 0x0009 Failed to read. For example, “?”.
Vresolution, Voffset, VUnit, VPlusOverData,
VminusOverData, VillegalData, VMaxData,
VMinData, Hresolution, HUnit, Date, or Time

AsciiRSLT_BOUNDARY 0x000A Range designation error.
AsciiRSLT_READ_ERROR 0x000B Access error to WVF file.
AsciiRSLT_UNSUPPORTED_DATATYPE 0x000C Error in DataType.

Only IU1, IS1, IU2, IS2, IU4, IS4, FS4, and
FS8 are supported.

AsciiRSLT_LINK_ERROR 0x000D DLL link failure.
AsciiRSLT_UNSUPPORTED_FUNCTION 0x000E Function not supported by the specified DLL.
AsciiRSLT_ZERO_BLOCKSIZE 0x000F The block size is 0.
AsciiRSLT_UNSUPPORTED_SCALING 0x0010 Scaling designation error. Other than

AsciiADWave, AsciiPhysicalWave, or
AsciiScalingWave.

AsciiRSLT_DISK_FULL 0x0011 Insufficient free disk space.
AsciiRSLT_MODIFY_ERROR 0x0012 Error in the parameter.
AsciiRSLT_ERROR 0x00FF Other error.

4.1 Error Codes

Index-1IM 707741-62E

In
d

ex

Index

Index

Index

C

CloseHandle ...3-8, 3-35

CloseLinearScaleWindow .. 3-49

CloseModuleWindow .. 3-48

CloseTrigWindow ... 3-30

CopyChSetup ... 3-39

CopyChSetupEx ... 3-39

CopySetup .. 3-38

CreateEvent .. 3-86

CsRead ... 3-108

CsWrite ... 3-111

D

DataRead .. 3-104

DataWrite .. 3-106

E

ExecManualArming .. 3-19

ExecManualTrig .. 3-18

ExecMeasureParam ... 3-90

ExecMeasureParamAcqData ... 3-91

Exit .. 3-5

F

FireClockPacket ... 3-28

FireTrigPacket .. 3-28

G

GetAcqData .. 3-65

GetAcqDataEx .. 3-68

GetAcqDataInfoEx .. 3-55

GetAcqDataSize ... 3-64

GetAlarmInfo .. 3-93

GetArmingSource ... 3-29

GetBlockNum ... 3-115

GetClockBusSource ... 3-25

GetControl .. 3-40

GetControlEx .. 3-42

GetCurrentData .. 3-73

GetDIO .. 3-15

GetDIOConfig ... 3-14

GetEXTIO ... 3-21

GetHandle ... 3-92

GetMeasureParam ... 3-77

GetModuleBus .. 3-46

GetModuleInfo .. 3-35

GetOverRun .. 3-85

GetPower .. 3-12

GetSampleChNum ... 3-114

GetScaleCurrentData ... 3-74

GetScaleCurrentDataEx ... 3-76

GetScaleData ... 3-70

GetScaleDataEx ... 3-71

GetScaleInfo ... 3-45

GetStationInfo ... 3-8

GetStationName ... 3-11

GetStatusLED ... 3-13

GetTRIG ... 3-22

GetTrigBusLogic ... 3-20

GetTRIGIN .. 3-23

H

HeaderCsReadS .. 3-107

HeaderCsWriteS ... 3-109

HeaderItemRead .. 3-112

HeaderItemWrite .. 3-113

HeaderReadS ... 3-103

HeaderWriteS ... 3-105

I

IdentifyStation ... 3-11

Init ... 3-4

InitializeAcqInfo .. 3-115

InitPreset .. 3-16, 3-36

InitSetup ... 3-16, 3-36

IsLinearScaleWindow ... 3-50

IsModuleWindow .. 3-48

IsNan... 3-93

IsRun... 3-55

IsTrigWindow .. 3-31

L

LatchData ... 3-72

LinkModule ... 3-34

LinkStation .. 3-7

LoadPatternData .. 3-83

LoadPatternDataEx .. 3-84

LoadSetup ... 3-17, 3-38

M

MoveMemory .. 3-94

O

OpenModule ... 3-33

OpenStation .. 3-7

OutputEXTIOEvent ... 3-28

P

Power .. 3-9

R

ReleaseEvent ... 3-89

ResetEventPattern ... 3-88

Restart .. 3-10

Index-2 IM 707741-62E

Index

S

SaveAcqData .. 3-78

SaveAcqHeader ... 3-82

SaveAsciiData .. 3-80

SavePatternData .. 3-83

SaveScaleAsciiData ... 3-81

SaveScaleAsciiDataEx ... 3-82

SaveScaleData ... 3-79

SaveScaleDataEx ... 3-79

SaveSetup ... 3-17, 3-37

SetArmingSource ... 3-29

SetClockBusSource ... 3-24

SetControl ... 3-40

SetControlEx .. 3-41

SetDIO .. 3-15

SetDIOConfig ... 3-13

SetEventMode .. 3-88

SetEventPattern ... 3-87

SetEXTIO .. 3-20

SetModuleBus .. 3-46

SetOverRun .. 3-85

SetQueryControl ... 3-43

SetRcvClockPacket .. 3-26

SetRcvTrigPacket ... 3-25

SetScaleInfo ... 3-44

SetSndClockPacket .. 3-27

SetSndTrigPacket ... 3-26

SetStationName ... 3-10

SetStatusLED ... 3-12

SetTRIG .. 3-21

SetTrigBusLogic ... 3-19

SetTRIGIN .. 3-23

ShowLinearScaleWindow... 3-49

ShowModuleWindow .. 3-47

ShowTrigWindow .. 3-30

Start ... 3-31, 3-50

StartEx .. 3-51

Stop .. 3-32, 3-51

StopEx .. 3-54

T

TransAcqData ... 3-95

W

Wvf2S16 ... 3-100

Wvf2S16GetSize .. 3-98

Wvf2W32 .. 3-100

Wvf2W32GetSize ... 3-99

Wvf2W7281 .. 3-101

Wvf2W7281GetSize ... 3-99

	Foreword
	How to Read This Document
	Contents
	Chapter 1 Overview
	Chapter 2 Using the .Net Compatible WE Control API
	2.1 Program Model
	2.2 Class Library Reference
	2.3 WEAPINet Classes
	2.4 WeAPINet Namespace Imports
	2.5 Class Declaration
	2.6 Initialization and Termination

	Chapter 3 Detailed Explanation of Classes
	3.1 Classes
	3.2 WeControl Class
	Init
	Exit
	GetStationList

	3.3 WeStation Class
	OpenStation
	LinkStation
	CloseHandle
	GetStationInfo
	Power
	Restart
	SetStationName
	GetStationName
	IdentifyStation
	GetPower
	SetStatusLED
	GetStatusLED
	SetDIOConfig
	GetDIOConfig
	SetDIO
	GetDIO
	InitSetup
	InitPreset
	SaveSetup
	LoadSetup
	ExecManualTrig
	ExecManualArming
	SetTrigBusLogic
	GetTrigBusLogic
	SetEXTIO
	GetEXTIO
	SetTRIG
	GetTRIG
	SetTRIGIN
	GetTRIGIN
	SetClockBusSource
	GetClockBusSource
	SetRcvTrigPacket
	SetSndTrigPacket
	SetRcvClockPacket
	SetSndClockPacket
	FireTrigPacket
	FireClockPacket
	OutputEXTIOEvent
	SetArmingSource
	GetArmingSource
	ShowTrigWindow
	CloseTrigWindow
	IsTrigWindow
	Start
	Stop

	3.4 WeModule Class
	OpenModule
	LinkModule
	CloseHandle
	GetModuleInfo
	InitSetup
	InitPreset
	SaveSetup
	LoadSetup
	CopySetup
	CopyChSetup
	CopyChSetupEx
	SetControl
	GetControl
	SetControlEx
	GetControlEx
	SetQueryControl
	SetScaleInfo
	GetScaleInfo
	SetModuleBus
	GetModuleBus
	ShowModuleWindow
	CloseModuleWindow
	IsModuleWindow
	ShowLinearScaleWindow
	CloseLinearScaleWindow
	IsLinearScaleWindow
	Start
	Stop
	StartEx
	StopEx
	IsRun
	GetAcqDataInfoEx
	GetAcqDataSize
	GetAcqData
	GetAcqDataEx
	GetScaleData
	GetScaleDataEx
	LatchData
	GetCurrentData
	GetScaleCurrentData
	GetScaleCurrentDataEx
	GetMeasureParam
	SaveAcqData
	SaveScaleData
	SaveScaleDataEx
	SaveAsciiData
	SaveScaleAsciiData
	SaveScaleAsciiDataEx
	SaveAcqHeader
	SavePatternData
	LoadPatternData
	LoadPatternDataEx
	SetOverRun
	GetOverRun
	CreateEvent
	SetEventPattern
	ResetEventPattern
	SetEventMode
	ReleaseEvent

	3.5 WeLib Class
	ExecMeasureParam
	ExecMeasureParamAcqData
	GetHandle
	IsNan
	GetAlarmInfo
	MoveMemory
	TransAcqData

	3.6 WeFilter Class
	Wvf2S16GetSize
	Wvf2W32GetSize
	Wvf2W7281GetSize
	Wvf2S16
	Wvf2W32
	Wvf2W7281

	3.7 WeFile Class
	HeaderReadS
	DataRead
	HeaderWriteS
	DataWrite
	HeaderCsReadS
	CsRead
	HeaderCsWriteS
	CsWrite
	HeaderItemRead
	HeaderItemWrite
	GetSampleChNum
	GetBlockNum
	InitializeAcqInfo

	Chapter 4 Error Codes
	4.1 Error Codes
	WeControl, WeStation, WeModule Class
	WeFilter Class
	WeFile Class

	Index

