User’s

Manual ScopeCorder SDK

YOKOGAWA ¢ IM D165-01EN

Yokogawa Test & Measurement Corporation 1st Edition

Notes

Trademarks

Revisions

1st Edition: June 2025 (YMI)

This user’s manual contains useful information about the precautions, functions, and API
specifications of the ScopeCorder SDK.

To ensure correct use, please read this manual thoroughly before operation. Keep this
manual in a safe place for quick reference.

For information about the handling precautions, functions, and operating procedures of
the DL950/SL2000 series and the handling and operating procedures of Windows, see
the relevant manuals.

» The contents of this manual are subject to change without prior notice as a result of
improvements to the product’s performance and functionality. Refer to our website to
view our latest manuals.

» The figures given in this manual may differ from those that actually appear on your
screen.

» Every effort has been made in the preparation of this manual to ensure the accuracy
of its contents. However, should you have any questions or find any errors, please
contact your nearest YOKOGAWA dealer.

» Copying or reproducing all or any part of the contents of this manual without the
permission of YOKOGAWA is strictly prohibited.

* Microsoft, Windows, Windows 10, Windows 11, and Visual Studio are registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

» Adobe and Acrobat are either registered trademarks or trademarks of Adobe Inc.

* In this manual, the ® and TM symbols do not accompany their respective registered
trademark or trademark names.

» Other company and product names are registered trademarks or trademarks of their
respective holders.

1st Edition: June 2025

All Rights Reserved. Copyright © 2025 Yokogawa Test & Measurement Corporation

IM D165-01EN

Notes on Usage

Handling Precautions

Disclaimers

This software is an API library for the DL950/SL2000 series. It cannot be used with
other products.

Check the version of this software and the firmware version of the DL950/SL2000
prior to use. This software is compatible with DL950/SL2000 firmware version 2.01
and later.

For information on how to use the DL950/SL2000, refer to each manual.

By downloading and installing this software, the customer agrees to all of the following
disclaimers.

Yokogawa bears no liability for any problems occurring as a result of downloading or
installing this software.

Yokogawa bears no responsibility for any damage caused directly or indirectly as a
result of using this software.

This software is provided free of charge, however no unlimited warranty against
software defects exists, nor is any claim made that the product is free of all defects
whatsoever. Also, Yokogawa is not always able to repair defects (“bugs”) in, or
respond to questions or inquiries about this software.

Yokogawa reserves all rights to this software, including but not limited to all property
rights, ownership rights, and intellectual property rights.

IM D165-01EN

Contents

Chapter 1

Chapter 2

Chapter 3

NOTES ON USAQE ...ttt et e e e e e e e e e e e e e e e e s e s te et e ittt eeeeeeaaaeaaaaeaeeeeananan ii

Software Overview
1.1 SOfWAIE OVEIVIEW ...ttt e e e e e e e e e et e e e e e e e e e e eeanaanns 1-1

API Overview

2.1 APT OVEIVIEBW. ...ttt ettt e et e e e et e e et e e e et e e e etaeeeenaeeeesneeesnseeas 2-1
Data AcQUISItION FUNCHON.........uuiiiiiiiiiiiiiieee e e e e 2-1
Flash acquisition data access library ... 2-2
File operation and transfer feature ... 2-2
2.2 Overview Of APl FUNCHONSooiiiiiie e e e 2-3
Initialization and termination...............oooii e 2-3
Connection and diSCONNECHONuiiiiiiiiiiii et e e 2-3
Getting or setting waveform acquisition conditionscccocoiiiiiiiiiiii e 2-3
Getting trigger-based waveform acquisition informationc.cccccoviiieiiiiiiiie e 2-3
Get WaVefOrM data.........c.eiiiiie e 2-4
Converting waveform dataoooi e 2-4
Event listener and callback fUNCHONS ..o 2-4
Getting flash acquisition waveform data information............ccccccoiiiiinii e 2-4
Getting the channel information stored in a waveform data fileccccooeeiieis 2-5
Get WaVETOrM data.......ooeiii e 2-5
Operating and transferring filleS...........ooi i 2-5
2.3 Basic FIow of USING the APoo ettt 2-6
Data Acquisition FUNCHION...........coo e 2-7
Unmanaged application (free run Mode)...........coouviiiiiiiiiiieec e 2-9
Managed application (free run Mode)ccueiiiiiiiiiiiii e 2-10
Unmanaged application (frigger MOde).........cuuiiiiiiiiiiie e 2-11
Managed application (trigger MOdE)ccvviiiiiiiiiiiie e 2-13
Flash acquisition data access library ... 2-15
Unmanaged ApPlICAtIoNeeiiiee e 2-16
Managed APPlICAtIONo 2-18

API Functional Specifications

3.1 DefiNItioN Of ClaSSeiiiiiiiiiiie ettt e e e e e eareeas 3-1
Class SCEVENILISIENETcoo i aeaeaeas 3-1
3.2 Definition of CONSANESuuiiiiiiiiiiicee e 3-2
SC_SUCCESS ...ttt e ettt e e et e e e st e e e saaeeeabteeenreeeanaeeas 3-2
SC_ERROR ... ittt ettt e et e e e e e e e e e s e e e e aanraaaa s 3-2
SC_UNOPENED ...ttt ettt e e e e e et e e e e e st e e e e s eenbaaeea s 3-2
SC_USE_ACQMEMORY ...ttt ettt ettt e e e e e e e et aae e e e e eaes 3-2
SC _ERR_UNOPENEDcooiiitiee ettt e eaaee e 3-2
SC_ERR_RUNNING ...ttt ettt e e e et e et e e e e e e eneeeenneeean 3-2
SC_ERR_SYNC _CONN ..ottt ettt ettt e st e e e e e s nee e e anta e e sneaesnnnee s 3-3
SC_ERR_SYNC _SUB ..ottt e e et e e e sntee e e e e e nnsneeaaeean 3-3
SC_ERR_RECORDERcciiitttiie ettt e e et e e e eannaaaeean 3-3
SC _ERR _IMODKE ittt ettt e e e e e e et e e e aanaae s 3-3
SC_ERR_NOTAPPLICABLEcooiiieee e 3-3
SC ERR N O D AT A . ettt e e e e et e e e e e et e e e e e s etteeaaeaan 3-4
SC_ERR_PARAMETER ...ttt ettt e e nnae e e a e neee s 3-4
SC_WIRE_USBTMC ...ttt ettt ettt et e e e enae e e snneaeeneeean 3-4
SC_WIRE_VISAUSB ...ttt ettt ettt ettt et e e eaea e aeee s 3-4

IM D165-01EN

Contents

SCWIRE_VXITT oo ee e e e ee e s e s e e ees e es s esee 3-4
SC WIRE_HISLIP oo eeee e eee e s e s s es e es e eseeesee 3-5
SC_FREERUN ...t ee e e s e s e s eeee 3-5
SC_TRIGGER ..o oo e s e 3-5
SC_TRIGGER _ASYNC ..o eeeeeeeeeeeeeeees e eeeeeeseeeeese s eeee s es e eeseeeesee 3-5
SC_UNOMODE ..o ee e e s e e s s e e ees e es e eeeeeenee 3-5
SC_EVENTTYPE_OVERRUNcoovooeeeeeeeeeeeeeeeeeeeeee e s eeseeeseeeeseeseeesee s esee 3-6
SC_EVENTTYPE_TRIGGERENDoveeeveeeeeeeeeeeeeeeee s eseeeesseeeeseeesseeseeeseesesseeesses 3-6
SC_SIZE_TBMB oo e e st 3-6
SCSIZE_B2MB ... 3-6
SCUSIZE_ BAMB ... e 3-6
SC_SIZE_128MB....eeoveeeeeeeeeeeeeeee e ee e eeeeeee e eeee e e ee e ee s ee s eee s ees e eee e eenee 3-6
SC_SIZE_25BMB......eoeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeseees e eeeeeee e ee e eseeeesseeeeseeessees e es e eeseeeeee 3-7
SC_SIZE_BA2MB ..o ee e eeeee e eeeee s ee e eeeeeeseee s e et s e s eeee e 3-7
SC_TOGMODE_ON ..o eeeeeeeeeeeee e ee e eeeeee s e s es e es e esee 3-7
SC_A0GMODE_OFF ..o e eee e es e s s e es e eee e 3-7
SC_DRIVE_IDRIVE ..o e s s e s s ee e 3-7
SC_DRIVE_NETWORK ... ovveeeeeeeeee e eeeeeeeeeeseeeeees e esseeseseeeesseseseeeseees e ees e eeseeeesee 3-7
SC_DRIVE_SD oo e ee e eeeee e se e e e ee e ee s ee s e s ees e ees e eeseeeesee 3-8
SC_DRIVE_USB_0.eooveesee e e seeeesseeseseesesseseees e eeseeeenee 3-8
SC_DRIVE_USB_ 1 oo eeee e eeeee e eee s ee e eseeeesseeeseeessees e es e eeseeesee 3-8
SC_DRIVE_FLASH. ... voooeeeeeeeeeee oo eeeee e eee e eeee e s e s e ees e es e esee s 3-8
SC_FILE_ETE_ALL oo s e s s s eeee 3-8
SC FILE ETE. SET oo e e s e s 3-8
SC_FILE_ETE_WDF oo ees e eeee s ees e eeee s es s eeee 39
SC_FILE_ETE_BMP ..oeooeeeoeeeeeeeeeeeeeeeeeeeeeeee e eeeeeseee e eeeeeseeeseeesse s e s eseeeense 39
SC_FILE_ETE_PNG ... veeeeeeoeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeessee e e essesesseseseeesseeeseeeseeeesseeesse 39
SC_FILE_ETE_JPGeoveoeeeeoeeeeeeeeeeeeeeeeeeeeeeeeeeee e see e e eseeeese e s esseees e s eseeeessee 39
SC_FILE_ETE_SNP .o eeeee e e e ee e s ee s e eese 3-9
SC_FILE ETE_SBL ..oreeeeeeeoeeee oo eeeee e s s ee e eere 3-9
SC_FILE_ETE_CSV oo e s s s eee e 3-10
SC_FILE_ETE_MAT ..ot eeeeeeeeee e eeee e eee e ee e eeeeeee s eeseeese s eeseeneees 3-10
ESTOIR=) 4 VLI o) = =IO 3-10
SC_SYNC_CONN oo ee e e e e e e e s eee s ee s ese s eeeeeeeees 3-10
SC_SYNC_ IMAIN ..o e e e e e e s s ee e es e eeeeeeeen 3-10
SCUSYNC _SUB...oooeeoeeeeeee e e e s ee s ees e s eee e 3-10
SC_STAT STOPPED ..o e ee e ee e s e ee e eeeeeeens 3-11
SC_STAT _RUNNING ..o eeeeeeeeeeeeeeeseeeee e seeeeeeseees e easeeeesseese s seseeeseeseesens 3-11
SC_STAT INTERNAL ..o e e eeeee e eeeeeeeeeseeeseeeees s seseeeeseseseeseseens 3-11
SC_STAT _EXTERNAL ...cveoeeeeeeee e eeeeeeeeeeeeeeeeeeeeeeeeeeseeseeeesssesseseesseeeeseeeesesesseseseens 3-11
SC_STAT _SSD oo eeeee e eeee e ees e eee s eesee e s ee e es e ees e ee e ee e ee s s eeeeseenens 3-11
SC_STAT FACQ .o eeeeeeeee oo eeeeeeeee e es e eeeeeeeesee e e ee e es e e s ee e ee e ee s eeseesseseeeens 3-11
SC_STAT _TRIGGER ..o eee e ee e s ees e es e seees 3-12
SC_STAT _FREERUN ... e s s s 3-12
SO STAT _OFF oo e e e s ee e e e s e s eeseeees e eeseeeeeen 3-12
SCUSTAT _ON oo e e e eeeee s e s ee s ee s eeseeeeseeeeeeseees 3-12
SO STAT ST oo eeee e eee e e ee e e e s ee e eses s ee s ee s es e eeeeeeees 3-12
OIS 1 NI 7O 3-12
SC_SORT_NAME_ASC +..ecooeeeeeeeeeeee oo e e e eeeeeese s esee s eee e 3-13
SC_SORT NAME_DESCveeoeeeeeo oo eeee e eeee e s ees e esee e senes 3-13
SC_SORT DATE_ASC....eeooeee oo e e e s s 3-13
SC_SORT _DATE_DESCcotveeeeeeeeeeeeeoeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeseeeeseseeseeesseeeeseeeseeeseees 3-13
SC_SORT _SIZE_ASC .oooeeeoeeeeeeeeeeeeeee oo eeeeeeeeeseeseeeeeeesseeeeeesesseseesesaeseessseeeseeeeseeseees 3-13

IM D165-01EN

Contents

SC_SORT _SIZE DESC ..ottt 3-13
Definitions of Data StrUCIUMES.......oeiiiiiiiie e 3-14
[F= T o | o I PP UPUPRRTT 3-14
DVICELIST.....oeeeeieeeeeeeeee et a e e e e 3-14
SHALUSINTO ... e e e e e nnnes 3-14
1) (o TSSO PP UT R OPUPRPNt 3-15

Chapter 4 API Detailed Specifications

COMMON AP et e e e ettt e e e e e st e e e e e e nnb e e e e e e aannaeeaaeeanns 4-1
o1 o 1 SO 4-1
ST | OSSP 4-1
SCOPENINSITUMENT ...ttt e e e e e e e e st e e e e s eabaeeae s 4-2
SCREOPENINSIIUMENToeiiiiiiiee e 4-3
SCCIOSEINSIIUMENT ... et e e e enaeeeaeean 4-4
ScOPENINSIIUMENTEX ...t 4-4
SCReOPENINSITUMENTEXeiiiiiiiiii e 4-6
SCCIOSEINSITUMENTEX. ... i 4-7
S TeR 1Y (07 o] o1 (o) RO SRPPP 4-7
S Te] =Y (00 o114 o) SRR 4-8
SCGEBINANYDALA ..o e en 4-9
SCQUETYMESSAFE. ...ttt 4-10
SCSEITOGMOUE ...ttt e e e et e e e e e e e e e e e ennaeeans 4-11
SCGEITOGMOUE ...ttt e e e e et e e e e e et e e e e e eeneneeas 4-12
SCSEAICHDIEVICES ...ttt 4-12
SCGEtSHALUSINTO ... e 4-13
SCTMCSEITIMEOUL..... it e e e e e e e e e nneeeeenees 4-13

Data Acquisition FUNCHON APoooriiii et 4-14
SCSetMeasuriNgMOUE........ccoiiiiiii e 4-14
ScSetMeasuriNngMOUEEX..........uiiiiiiii e 4-14
S To1s] £ o AR PO PRRSP 4-15
SCSTAMEX ettt 4-15
S To1s] (o] o O OO TO U P PRSP 4-15
Yot (o] o] = SRR OO PRSPPI 4-16
S Te = ol 1 I - | = PSSR 4-16
SCLACADATAEXeeiiieiiieiee ettt e a e 4-17
ScGetLatChRAWDALA.oiiiiiiiii e 4-18
SCGEICNACADALA e 4-19
SCGEIACADALA ... et a e raaeas 4-21
ScGetACqDAtALENGLN ... e 4-22
ScGetFreeRUNDatalength.........oceoiiiiiii s 4-23
SCGEtLAtChACCOUNL.....eeeeeeeeeee e e e e e e e e e 4-23
SCGEIACGCOUNL ...ttt 4-24
SCSEIACHCOUNL ...ttt 4-24
SCGEITIGIEITIME ..ttt ettt et et e e snb e e et e e ennees 4-25
SCRESUMEACQUISIEIONueeiiiiiiiieie e e e e 4-25
S Toa 1Y Iy T T 1= I 4 1= o T | TR 4-26
SCGetTriggerTIMEOULcoii ettt e e e e e e e neneeas 4-26
ScGetMaxHISTOrYCOUNL........ccuiiiiicc e 4-27
SCSetSamMPINGRALE ... 4-27
ScGetSamMPliNGRALE.eiiiiiiie e 4-28
ScGetChannelSamplingRAtecooiuiiiiie e 4-28
SCGEIChANNEIBILS ... e 4-29
SCGEtChANNEIGAINoiiiiiie et 4-29

IM D165-01EN

Contents

ScGetChannelOffSEL 4-30
SCGetChannEISCale..........ooi e 4-30
SCGEICNANNEITYPE ...t 4-31
SCAAAEVENTLISIENETiiiiiieeie e e e e e e e e e e nrneeas 4-31
SCREMOVEEVENTLISIENET ...t 4-32
RS To7 e [0 [2=1 1| o= o1 SRR 4-33
SCREMOVECAIIDACK. ...t e 4-33
Flash Acquisition Data Access Library API...........ooo e 4-34
SCGEIFACGCOUNT ...t 4-34
SCGEtFACFIIENAME. ... s 4-34
SCOPENFACIDALA ...t e e e e e e e e e e enraeeas 4-35
SCCIOSEFACHDALA ...t 4-35
SCCIEATACAMEIMONY ...ttt e e e e e e e e e enteeeeneeeesnneeeeneeeenees 4-36
SCGEtFACOSIAMTIME. ... e e e e e 4-36
SCGEtFACHTIMEBASE ...t e e e 4-37
SCGEtFACGCOMMENT ... 4-37
ScGetFACGChANNEICOUNTiiiiiie e 4-38
ScGetFACChaNNEINUMDEToooiiiiiiie e 4-38
SCGEtFACACNANNEIBILS......ccciiiiiiie e 4-39
ScGetFACACRANNEIGAIN ... 4-40
ScGetFACqQChanNelHOMSEL ... 4-40
ScGetFACqChannelHRESOIULIONcciiiiiiiiiic e 4-41
ScGetFACGChANNEILADEL.oooiiiiiie s 4-42
ScGetFACAChaNNEILOGICBILSciiiiiiiiiiiee et 4-42
ScGetFACqChannelLogiCLabeluiiiiiiiiiiiie e 4-43
ScGetFACChanNNElOSEt........uviieiiccee e 4-43
SCGEetFACGCANNEISIGN ...eiiiiiieee e 4-44
SCGEtFACHCNANNEITYPE ..ot a e e 4-45
ScGetFACGCANNEIUNIL ...t 4-45
ScSetFACGChanNEINUMDETeiiiiiiii s 4-46
SCGEtFACHDAtALENGLN ...coiiiiiieee e 4-46
SCGEIFACHDALA ...oeiieeie e aeaas 4-47
SCSEtFACDALASIZEeeeiiee e 4-48
File Operation and Transfer APcoo oo 4-49
SCSELCUITENTDIIVEottt e et e e e e e e e e e e aneeeeens 4-49
SCGEICUIMENIDIIVE ...ttt et e e et e e e e enneeeens 4-49
SCSEtCUITENIDIrECIONY ... et 4-50
SCGEtCUIMENTDITECIONY ... iiii ettt e e e e e e e e e e e e e enaeeeeas 4-50
ST € 1= {1 1=T N0 S 4-51
1o €T {1 1=Y oo S 4-51
SCDEIBIEFIIE ...t 4-52
SCDOWNIOAAFIIE ..ottt e e e e e e e e neeeeeas 4-52
SCUPIOAAFIIE ...t 4-53
SCSAVETIIGGEIWDF ...t e e e e e et e e e e e e e e e e snnneeeeas 4-53
SCSAVEFTEERUNWDFot 4-54
SCSAVESEIUPD ...t a e e e e e e aarraaeas 4-54
SCLOAASEIUP. .. .ttt a e e aaaraaeas 4-55
SCGELFIIELISTttt et e e e e e e e aneeeeens 4-55
SCGELFIEINFOLIST. ...t e e e 4-57
DLL LinKing MehOQ.coiiiiiiiiiie i 4-58

vi

IM D165-01EN

Contents

Chapter 5 Appendix

5.1

5.2
5.3
5.4
5.5
5.6

Data AcQUISItioN FUNCHONuuiiiiiiiiieiicecc e 5-1
Free RUN MOGE ...t 5-1
BT LT [Yo [SR R 5-4

Flash acquisition data access library...........ccccoeiiiiii 5-8

How to Use Communication COMmMEaNASc.eeeiiiiiiiiiiiiiieeiie e 5-9

Migration 10 SCOPECOrder SDKoiiiiiiiiiiie ittt 5-10

Comparison with the SL1000 Control API (SXAPI).......ccccviiiiiiiiiee e 5-11

SAMPIE PrOgramS.oe ettt ettt e st e e e e e nnneeeenreeeans 5-12
Reconnect instruments and set measurement modes (reopen)cccceecveerieeeennnnn. 5-13
Data acquisition free run (freerun SingleUnit) ... 5-14
Data acquisition free run for multi-unit synchronization (freerun MultiUnit).................. 5-16
Data acquisition trigger (trigger SingleUnit) ..o 5-18
Data acquisition trigger for multi-unit synchronization (trigger MultiUnit) 5-20
Flash acquisition data access (flashacquition).............cccceeiiiiiiiiiii i 5-22
File operation and transfer...........ccuviii oo 5-24

IM D165-01EN

vii

Chapter 1 Software Overview

1.1 Software Overview

Description

This software (ScopeCorder SDK) provides application programming interface (API)
for waveform data acquisition in DL950/SL2000 series, transfer of data stored in flash
acquisition memory to PC, file operation and file transfer functions.

Function

This software can be used to perform the following functions. For details, see “Detailed
API Specifications.”
* Initializing the API
» Connecting and disconnecting from measuring instruments
» Setting parameters
* Getting waveform data
» Getting the measurement conditions of waveform data stored in the flash
acquisition area
» Getting the waveform data stored in the flash acquisition area
* Getting the list of files stored in the instrument
» Operating and transferring files (instrument to PC and PC to instrument)

Nofte

For features not covered by this APl (mainly channel (vertical-axis) settings), implement them
using communication commands by referring to the DL950 ScopeCorder/SL2000 High-Speed
Data Acquisition Unit Communication Interface User’s Manual, IM DL950-17EN.

Software structure

This software consists of the following:

Folder name File name Description

readme.ixt Version information of ScopeCorder SDK
dll ScSDK.dII API| Main Unit

ScSDKe64.dll API Library 64-bit \Version

ScSDKNet.dll Free Run API Library for .NET

tmctl.dll Communication Library (7.0.0.0)

tmctl64.dll Communication Library 64-bit Version (7.0.0.0)
doc IMD165-01EN_010.pdf ScopeCorder SDK User’s Manual (this manual)
sample Sample Programs

For details, see section 5.6, “Sample Programs.”

ve ScSDK.lib API Import Library (C++ only)

ScSDKG64.lib API Import Library 64-bit Version (C++ only)

ScSDK.h Function Declaration Header File (C++ only)

PC System Requirements
PC

A PC that meets the following conditions is required.

A PC running the English or Japanese version of Windows 10 (32 bit or 64 bit)

A PC running the English or Japanese version of Windows 11
Note that when waveforms are acquired in free run mode using this software, data is
saved in a specified buffer. For the memory size required by the API, see “Required
memory size” in section 5.1, “Free Run Mode.”

Development Environment
Visual Studio 2017 or later, .NET Framework 4.7 or later

IM D165-01EN

11

1.1 Software Overview

System requirements for running user programs

USB driver

The following environment may be necessary to perform waveform acquisition in free run
mode using a program that you create with this software depending on your waveform
acquisition conditions and connection type.
When using 10Gbit Ethernet connection
+ CPU
Desktop-Type PC
Intel Core i7-1165G7 or better, quad core (8 threads) or better, 4.7 GHz or faster
* Memory
16 GB or more
+ SSD
512 GB or more (M.2 slot SSD recommended, read/write performance 3 GB/s or
better)

When using 1Gbit Ethernet or USB connection
- CPU
Intel Core i5-10210U or better, quad core (8 threads) or better, 4.2 GHz or faster
* Memory
8 GB or more
+ SSD
256 GB or more (read/write performance 400 MB/s or better)

To use this software over a USB connection, you need a dedicated USB driver (YTUSB)
or an IVl driver (VISA). You can download the latest USB driver from the following web

page:

https://tmi.yokogawa.com/library/

Run Setup.exe in the YTUSB folder. The installation wizard starts. For details on the
installation procedure, see the manual (ReadMe_en.pdf) in the YTUSB folder.

DL950/SL2000 firmware version

This software can be used with DL950/SL2000 with firmware version 2.01 or later.
Download the latest firmware from the our web page.

https://tmi.yokogawa.com/library/

1-2

IM D165-01EN

Chapter 2

API Overview

2.1

APl Overview

The APl is provided as a dynamic link library (DLL). The API can be used by linking user
applications with this DLL.

The API provides the following three functions.

» Data Acquisition Function

» Flash acquisition data access library

 File operation and transfer feature

Data Acquisition Function

As shown in the following figure, the data acquisition function provides functions for
obtaining waveform data being acquired by the instrument and setting measurement
conditions to the application. (Free run measurement and trigger measurement)

DL950 / SL2000 Series

Waveform Data

PC (Windows) !

Call

Transfer ScSDKNet.dll

tmctl.dll ~
ScSDK.dlI

The API’s data acquisition function supports two acquisition modes: free run and trigger.

(1) Free run mode
Free run mode is used to acquire data from the start to the end of waveform acquisition.

Waveform acquisition specifications in free run mode

Maximum data rate 320 MB/s (10 MS/sx16¢ch) for 10Gbit Ethernet connection
Maximum data rate 6.4 MB/s (200 kS/sx16¢ch) for 1Gbit Ethernet/USB connection
Maximum waveform acquisition time 10 days (maximum operation time

guaranteed for this API)*

* If data is sent from a DL950/SL2000 at the above data rate in measurement using
multi-unit synchronization connection, the possibility of data transmission buffer
overrun occurring will increase depending on the connection environment, the PC
performance, and so on. As such, it is recommended that measurements be made
with the total data rate of the multiple connected units set within the above range.

IM D165-01EN

241

2.1 API Overview

(2) Trigger mode

Trigger mode is used to acquire waveform using triggers. There are two trigger modes

available with the API: (1) synchronous mode in which the DL950/SL2000 acquires

waveforms synchronously with the PC and (2) asynchronous mode in which the DL950/

SL2000 acquires waveforms asynchronously with the PC.

Note that the API does not support the following features.

» Waveform acquisition in roll mode (the DL950/SL2000 itself supports waveform
acquisition in roll mode, but the API does not support waveform acquisition while the
DL950 is acquiring waveforms in roll mode)

« DL950/SL2000 trigger mode set to Single N

» Waveform acquisition using dual capture

» Real-time recording (SSD and flash acquisition)

* Recorder mode

Trigger-based waveform acquisition specifications
Maximum waveform acquisition time 10 days (maximum operation time
guaranteed for this API)*

When high-speed transmission mode using 10GbpsEthernet is enabled, the maximum
record length that can be specified is as shown below due to the memory join limitation.
For details on memory join, see the appendix in the DL950 ScopeCorder/SL2000 High-
Speed Data Acquisition Unit User’s Manual (IM DL950-03EN).

Standard model: 250 M

/M1 Model: 1 G

/M2 Model: 2 G

Flash acquisition data access library

As shown in the following figure, the Flash Acquisition Data Access Library provides
applications with a function for extracting flash acquisition waveform data stored in a
DL950/SL2000 directly to a PC without loading the data into the instrument.

*

Note that the acquisition memory is used as a temporary buffer when flash acquisition
waveform data is extracted through the use of this API. Thus, data and history
information in the acquisition memory that have not been saved to a storage device
will be cleared. Waveform data stored in the flash acquisition area is not affected.
This feature is available only when the /ST2 option is installed.

*

File operation and transfer feature

The file operation and transfer feature provides applications with features related to the
acquisition, transmission, and deletion of DL950/SL2000 measurement data and settings.

2-2

IM D165-01EN

2.2 Overview of API Functions

This section provides an overview of the API functions.

Initialization and termination
The API functions for initialization and termination are as follows.

APl Name Function Page
Sclnit Initialize the API 4-1
ScExit Close the API 4-1

Connection and disconnection
The API functions for connecting and disconnecting from the measurement instrument are as follows.

APl Name Function Page
ScOpenlinstrument Open an instrument and get the API handle 4-2
ScReopenlinstrument Reopen the instrument 4-3
ScCloselnstrument Close the instrument 4-4
ScOpenlinstrumentEx Connect to the instruments in multi-unit synchronization and get the list of 4-4
connection handles
ScCloselnstrumentEx Disconnect from the instruments using the connection handle list 4-7
ScSearchDevices Get the list of connectable instruments 4-12

Getting or setting waveform acquisition conditions
The API functions for getting and setting waveform acquisition conditions are as follows.

APl Name Function Page
ScSetControl Send a command to the instrument 4-7
ScGetControl Receive a command response from the instrument 4-8
ScQueryMessage Send a command and receive a response 4-10
ScGetBinaryData Receive binary data 4-9
ScSetSamplingRate Set the sampling rate 4-27
ScGetSamplingRate Get the sampling rate 4-28
ScGetChannelSamplingRate Get the channel sampling rate 4-28
ScSet10GMode Sets the 10G high-speed transmission mode 4-11
ScGet10GMode Gets the 10G high-speed transmission mode 4-12
ScStart Start waveform acquisition 4-15
ScStop Stop waveform acquisition 4-15
ScGetStatusinfo Get the status information of the instrument 4-13
ScTmcSetTimeout Set the TMCTL timeout period 4-13

Getting trigger-based waveform acquisition information
The API functions for getting trigger-based waveform acquisition information are as follows.

APl Name Function Page
ScSetMeasuringMode Set the data acquisition mode 4-14
ScGetlLatchAcqCount Get the latest acquisition count at the latch point 4-23
ScGetAcqCount Get the acquisition count for acquiring data 4-24
ScSetAcqCount Set the acquisition count for acquiring data 4-24
ScGetTriggerTime Get the trigger time for the specified acquisition count 4-25
ScResumeAcquisition Resume waveform acquisition in synchronous mode 4-25
ScSetTriggerTimeout Set the timeout value on the DL950/SL2000 in synchronous mode 4-26
ScGetTriggerTimeout Get the timeout value on the DL950/SL2000 in synchronous mode 4-26

IM D165-01EN

2.2 Overview of API Functions

Get waveform data

The API functions for getting waveform data in free run mode are as follows.

APl Name Function Page
SclLatchData Latch the waveform acquisition information 4-16
ScGetlLatchRawData Get waveform data after latching 4-18
ScGetChAcqData Get waveform data information of a specified channel from the block data 4-19
obtained using ScGetLatchRawData
ScGetFreeRunDatalength Get the number of valid points according to the time base setting in free run 4-23
mode.
The API functions for getting waveform data in trigger mode are as follows.
APl Name Function Page
SclLatchData Latch the waveform acquisition information 4-16
ScGetAcqData Get the measurement data for the specified acquisition count 4-21
ScGetAcqDatalength Get the data length for the specified acquisition count 4-22
Converting waveform data
The API functions for converting waveform data into physical values are as follows.
APl Name Function Page
ScGetChannelBits Get the data bit count of the channel 4-29
ScGetChannelGain Get the gain value of the channel (used to convert waveform data into actual ~ 4-29
data)
ScGetChannelOffset Get the offset value of the channel (used to convert waveform data into actual 4-30
data)
ScGetChannelScale Get the upper and lower limits of the channel display scale 4-30
ScGetChannelType Get the type of channel waveform data 4-31
Event listener and callback functions
The event listener and callback API functions are as follows.
APl Name Function Page
ScAddEventListener Add an event listener (C++ only) 4-31
ScRemoveEventListener Delete the event listener (C++ only) 4-32
ScAddCallback Add a call back method (C# only) 4-33
ScRemoveCallback Delete the call back method (C# only) 4-33
Getting flash acquisition waveform data information
The API functions for getting flash acquisition waveform data information are as follows.
APl Name Function Page
ScGetFAcqCount Getting the number of flash acquisition waveform data files stored in the 4-34
instrument
ScGetFAcgFileName Get the name of a flash acquisition waveform data file stored in the instrument 4-34
ScOpenFAcqData Open a waveform data file for data transmission 4-35
ScCloseFAcqData Close the opened waveform data file 4-35
ScClearAcqMemory Clear the waveform data in the acquisition memory 4-36
ScGetFAcqgStartTime Get the measurement start time of the opened waveform data file 4-36
ScGetFAcqTimeBase Get the time base setting of the opened waveform data file 4-37
ScGetFAcgComment Get the comment for the opened waveform data file 4-37
ScGetFAcgChannelCount Get the total number of channels stored in the opened waveform data file 4-38
ScGetFAcgChannelNumber Get the channel numbers stored in the opened waveform data file 4-38

IM D165-01EN

2.2 Overview of API Functions

Getting the channel information stored in a waveform data file
The API functions for getting the channel information stored in the opened waveform data file are as follows.

APl Name Function Page
ScGetFAcgChannelBits Get the specified channel’s number of bits per data point 4-39
ScGetFAcgChannelGain Get the specified channel’s gain 4-40
ScGetFAcqChannelHOffset Get the specified channel’s offset time from the measurement start time 4-40
ScGetFAcgChannelHResolution Get the specified channel’s sampling interval 4-41
ScGetFAcqChannellLabel Get the specified channel’s label name 4-42

ScGetFAcqChannellLogicBits
ScGetFAcgChannelLogicLabel

Get the effective number of bits when the specified channel is a logic channel 4-42
Get the label name of each bit when the specified channel is a logic channel 4-43

ScGetFAcqChannelOffset Get the specified channel’s offset value 4-43
ScGetFAcgChannelSign Get the specified channel’s sign information. 4-44
ScGetFAcqChannelType Get the specified channel’s data type 4-45
ScGetFAcqChannelUnit Get the specified channel’s unit string 4-45

Get waveform data
The API functions for getting waveform data are as follows.

APl Name Function Page
ScSetFAcqChannelNumber Set the channel number you want to get the waveform from 4-46
ScGetFAcgDatalength Get the number of data points in the waveform to be acquired 4-46
ScGetFAcgData Get the specified channel’s data 4-47
ScSetFAcgDataSize Set the maximum data size to send at one time 4-48
ScSet10GMode Sets the 10Gbps high-speed transmission mode 4-11
ScGet10GMode Gets the 10Gbps high-speed transmission mode 4-12

Operating and transferring files

The API functions for operating and transferring files are as follows.

APl Name Function Page
ScSetCurrentDrive Set the current drive 4-49
ScGetCurrentDrive Get the current drive 4-49
ScSetCurrentDirectory Set the current directory 4-50
ScGetCurrentDirectory Get the current directory 4-50
ScGetFileNum Get the number of files 4-51
ScGetFilelnfo Get file information 4-51
ScDeleteFile Delete a file 4-52
ScDownloadFile Get the instrument file 4-52
ScUploadFile Save a file in the instrument 4-53
ScSaveTriggerWDF Get a trigger waveform as a WDF file 4-53
ScSaveFreeRunWDF Get a free run waveform as a WDF file 4-54
ScSaveSetup Get the instrument settings 4-54
SclLoadSetup Apply the setup file settings to the instrument 4-55
ScGetFileList Get the file list 4-55
ScGetFilelnfoList Get the file information list 4-57

IM D165-01EN

2-5

2.3 Basic Flow of Using the API

Handle

Each API function is used through a handle. First, a handle is created when an
instrument is opened. Then, the target instrument is accessed by passing the handle as
an API parameter.

When connecting to instruments in multi-unit synchronization connection, a handle is
created for each instrument to be accessed.

Single Uinit
API

handle1

DL950 / SL2000

Multi Uinit

API
API Connect
handle1 handle2 handle3
[Main] [Sub1] [Sub2] -
CH1~16, Rmath1~16 CH1~16, Rmath1~16 CH1~16, Rmath1~16 Multi Unit Sync

Set and query

The API enables data access and file operation and transfer for data acquisition and flash
acquisition by means of handles. However, when using other functions, DL950/SL2000
communication commands are sent and received using APIs such as ScSetControl and
ScGetControl. For details, see section 5.3. In addition, this APl is set at the start of the
connection so that all responses to commands are only data without headers.

Event messages
The API has a function to notify the user with an event message that a trigger has been

detected by the instrument or that a measurement has been completed, in order to
improve the efficiency of application program execution. Here, this is called an event.
Events are generated using service request (SRQ) interrupts from the equipment. This
allows you to write programs that perform processing in response to notified events.

2-6 IM D165-01EN

2.3 Basic Flow of Using the API

Data Acquisition Function

ScopeCorder SDK (FreerunMode) |

Begin

using the API
Sclnit()

!

Connect to the
instrument
ScOpenlnstrument()

Y

Add event listener
ScAddEventListener()

!

Set

ScQu

ScSetControl()

parameters

eryMessage()

!

Start acquisition
ScStart()

<
¢

Y

Latc

SclLatchData()

h acquisition

!

Get wave data
ScGetlLatchRawData()

!

Us

er program

Continuous

acquisition? <>L

[No]l

Stop acquisition

ScStop

!

Disconnect from the
instrument
ScCloselnstrument()

Y

End using the API

ScExit()

End

Event listener

Receive events
handleEventScCallListener()

Y
User program
(Reset latch & wave data)

IM D165-01EN

2-7

2.3 Basic Flow of Using the API

ScopeCorder SDK (TriggerMode) |

Begin using the API
Sclnit()

!

Connect to the
instrument
ScOpenlnstrument()

Y

Add event listener
ScAddEventListener()

!

Set parameters
ScSetControl()
ScQueryMessage()

!

Start acquisition

ScStart()
Y Waiting event listener
Waiting event
listener
< Receive events >
Continuous [Yes] handleEventScTrigEnd()
acquisition? ¢
Latch acquisition
[No] SclatchData()
Stop acquisition ¢
ScStop Check data length
¢ ScGetAcqDatalength()
Disconnect from the ¢
instrument Get wave data
ScCloselnstrument() ScGetAcgData()
End using the API
ScExit() User program
End Get wave data

ScResumeAcaquisition()

2-8 IM D165-01EN

2.3 Basic Flow of Using the API

Unmanaged application (free run mode)

The basic flow of using the APl and a sample code for C++ (unmanaged application) are
provided below.
Error procedures are omitted.

1. Initialize the API (required).

#include "ScSDK.h"

ScInit () ;

2. Open the instrument (DL950/SL2000) and create a handle (required).
After opening the instrument, use this handle to access the instrument.

ScHandle handle;
ScOpenInstrument (SC WIRE USB, "91K225903", SC FREERUN,
&handle) ;

3. Add an event listener.
In free mode, when an interface other than 10GEther is in use, data overrun can be
detected. To detect overruns, use overrun events. To use overrun events, create a
class that inherits the ScEventListener class, and add it to the API. Overwriting the
handleEventScCallListener method causes the same method to be called when an
overrun occurs. When an overrun is detected in free run mode, the data retrieved
using waveform data acquisition becomes invalid (received data is no longer
guaranteed). If this occurs, latch commands can be sent consecutively to clear this
state.
Note that if waveform acquisition sampling is slow and the communication
environment allows data to be retrieved continuously, waveform acquisition is possible
without adding overrun detection.

class cYourClass : public ScEventListener {

public:
virtual void handleEventScCalllListener (ScHandl handle,
__int64 reserve);

b

cYourClass* yourClass = new YourClass();
ScAddEventListener (handle, yourClass);

4. Start waveform acquisition.

ScStart (handle) ;

5. Latch (required to acquire waveforms).
This marks the acquisition position of the waveform data.

ScLatchData (handle) ;
6. Get the waveform.

char buff[100000];
ScGetLatchRawData (handle, buff, sizeof (buff), &recievelen);

Repeat steps 5 (latch) and 6 (waveform data acquisition) during waveform acquisition.

IM D165-01EN

29

2.3 Basic Flow of Using the API

7. Stops waveform acquisition

ScStop (handle) ;

8. Disconnect from the instrument (required).

The handle is invalidated when this APl command is called.

ScCloseInstrument (handle) ;

9. Close the API (required).

ScExit () ;

Managed application (free run mode)

The basic flow using the API and a sample code for C# (managed application) are
provided below.
Error procedures are omitted.

1. Initialize the API (required).

Add ScSDKNet.dll to References of the Visual Studio Solution Explorer in advance.
The name space is ScCSDKNet, and the APl is defined as methods in the ScSDK
class.

using ScSDKNet;

ScSDK api = new ScSDKNet.ScSDK() ;
api.ScInit();

. Open the instrument (DL950/SL2000) and create a handle (required).

After opening the instrument, use this handle to access the instrument.

int handle;
api.ScOpenInstrument (ScSDK.SC WIRE USB, "91K225903",
ScSDK.SC FREERUN, out handle);

. Add an event callback method.

In free mode, when an interface other than 10GEther is in use, data overrun can

be detected. To detect overruns, use overrun events. To use overrun events, add a
callback method to the API. The same method will be called when overrun events
occur. When an overrun is detected in free run mode, the data retrieved using
waveform data acquisition becomes invalid (received data is no longer guaranteed). If
this occurs, latch commands can be sent consecutively to clear this state.

Note that if waveform acquisition sampling is slow and the communication
environment allows data to be retrieved continuously, waveform acquisition is possible
without adding overrun detection.

private void overrunCallback (int hndl, int type)

{

}
api.ScAddCallback (hndl, overrunCallback,
SCSDK.SCiEVENTTYPEiOVERRUN);

. Start waveform acquisition.

api.ScStart (handle);

IM D165-01EN

2.3 Basic Flow of Using the API

. Latch (required to acquire waveforms).

This marks the acquisition position of the waveform data.

api.ScLatchData (handle) ;

. Get the waveform.

byte[] buff = new byte[100000];
int recievelen;
api.ScGetLatchRawData<byte> (handle, buff, buff.Length,

out receivelen);

Repeat steps 5 (latch) and 6 (waveform data acquisition) during waveform acquisition.

. Stops waveform acquisition

api.ScStop (handle) ;

. Disconnect from the instrument (required).

The handle is invalidated when this APl command is called.

api.ScCloseInstrument (handle) ;

. Close the API (required).

api.ScExit ()

Unmanaged application (trigger mode)
The basic flow of using the API and a sample code for C++ (unmanaged application) are

provided below.
Error procedures are omitted.

1.

Initialize the API (required).

#include "ScSDK.h"

ScInit () ;

. Open the instrument (DL950/SL2000) and create a handle (required).

After opening the instrument, use this handle to access the instrument.

ScHandle handle;
ScOpenInstrument (SC WIRE USB, "91K225903", SC TRIGGER,
&handle) ;

. Add an event listener.

In synchronous trigger mode, use trigger end events. To use trigger end events, create
a class that inherits the ScEventListener class, and add it to the API. Overwriting the
handleEventScTrigEnd method causes the same method to be called when a trigger
end event occurs.

In asynchronous trigger mode, there is no need to create or register an event listener
because events do not occur.

IM D165-01EN

2.3 Basic Flow of Using the API

class cYourClass : public ScEventListener {
public:

virtual void handleEventScTrigEnd (ScHandl handle);
}i

cYourClass* yourClass = new YourClass();

ScAddEventListener (handle, yourClass);
4. Start waveform acquisition.
ScStart (handle) ;

5. Latch (required to acquire waveforms).
Measurement information (history information) is marked.

ScLatchData (handle) ;

6. Get the history information.
Read the latched acquisition count, and check whether the history has been updated.
If so, set the acquisition count for reading the data.

ScGetLatchAcgCount (handle, &acgCount);
ScGetAcgCount (handle, acgCount) ;

7. Get the waveform.
When waveforms are acquired in trigger mode, the number of points that can be
obtained with ScGetAcqDatalength is the specified record length. The number
of points depends on the record length and T/Div (sample rate). Since the size
passed to ScGetAcqData is the number of bytes, determine the data point size with
ScGetChannelBits in advance.

char buff[100000];

ScGetAcgDatalength (handle, 1,0, &length);

ScGetAcgData (handle, 1, 0, buff, sizeof (buff), &count,
&dataSize) ;

ScResumeAcquisition (handle) ;

Note that the maximum size that can be obtained with one ScGetAcgData is
9999999999 bytes due to communication specification limitations. Therefore, if the
record length is more than 500 Mpoints (for analog modules such as voltage), data
must be obtained using ScGetAcgData multiple times.

In synchronous mode, resume acquisition (ScResumeAcquisition) when the data is
acquired from all necessary channels.

Repeat steps 5 (latch) to 7 (waveform data acquisition) during waveform acquisition.
8. Stops waveform acquisition
ScStop (handle) ;

9. Disconnect from the instrument (required).
The handle is invalidated when this API function is called.

ScCloseInstrument (handle) ;
10. Close the API (required).

ScExit () ;

2-12 IM D165-01EN

2.3 Basic Flow of Using the API

Managed application (trigger mode)
The basic flow using the APl and a sample code for C# (managed application) are

provided below.
Error procedures are omitted.

1. Initialize the API (required).
Add ScSDKNet.dll to References of the Visual Studio Solution Explorer in advance.
The name space is ScSDKNet, and the APl is defined as methods in the ScSDK
class.

using ScSDKNet;

ScSDK api = new ScSDKNet.ScSDK() ;
api.ScInit();

2. Open the instrument (DL950/SL2000) and create a handle (required).
After opening the instrument, use this handle to access the instrument.

int handle;
api.ScOpenInstrument (ScSDK.SC WIRE USB, "91K225903",
ScSDK.SC TRIGGER, out handle);

3. Add an event callback method.
In synchronous trigger mode, use trigger end events. To use trigger end events, add a
callback method to the API. The same method will be called when trigger end events
occur.
In asynchronous trigger mode, there is no need to create or register an event listener
because events do not occur.

private void trigEndCallback (int hndl, int type)
{

}
api.ScAddCallback (hndl, trigEndCallback,
ScSDK.SC _EVENTTYPE TRIGEREND) ;

4. Start waveform acquisition.
api.ScStart (handle) ;

5. Latch (required to acquire waveforms).
Measurement information (history information) is marked.

api.ScLatchData (handle);

6. Check the history information.
Read the latched acquisition count, and check whether the history has been updated.
If so, set the acquisition count for reading the data.

api.ScGetLatchAcgCount (handle, out acqgCount);
api.ScGetAcgCount (handle, out acgCount) ;

IM D165-01EN 2-13

2.3 Basic Flow of Using the API

7. Get the waveform.
When waveforms are acquired in trigger mode, the number of points that can be
obtained with ScGetAcgDatalLength is the specified record length. The number
of points depends on the record length and T/Div (sample rate). Since the size
passed to ScGetAcqData is the number of bytes, determine the data point size with
ScGetChannelBits in advance.

byte[] buff = new byte[100000];

int count, dataSize;

api.ScGetLatchAcgData<byte> (handle, 1, 0, buff, buff.Length,
out count, out dataSize);

Note that the maximum size that can be obtained with one ScGetAcgData is
9999999999 bytes due to communication specification limitations. Therefore, if the
record length is more than 500 Mpoints (for analog modules such as voltage), data
must be obtained using ScGetAcqData multiple times.

In synchronous mode, resume acquisition (ScResumeAcquisition) when the data is
acquired from all necessary channels.

Repeat steps 5 (latch) to 7 (waveform data acquisition) during waveform acquisition.
8. Stops waveform acquisition
api.ScStop (handle) ;

9. Disconnect from the instrument (required).
The handle is invalidated when this API function is called.

api.ScCloseInstrument (handle) ;
10. Close the API (required).

api.ScExit () ;

2-14 IM D165-01EN

2.3 Basic Flow of Using the API

Flash acquisition data access library

ScopeCorder SDK(Flash Acquisition)

Begin using the API
Sclnit()

'

Connect to the instrument
ScOpenlnstrument()

1

Get flash acquisition information
ScGetFAcqCount()/ScGetFAcgFileName()

'

Open flash acquisition data
ScOpenFAcqData()

1

Get acquisition information
ScGetFAcqStartTime()
ScGetFAcqTimeBase()

v

Get channel information
ScGetFAcqChannelCount()/. . .

/

<
¢

Y

Set channel number
ScSetFAcqChannelNumber()

1

Get wave data
ScGetFAcqDatalength()/
ScGetFAcqData()

1

User program

Continue to
other channels?

[Yes]

[N°]l

Close flash acquisition data
ScCloseFAcgData()

'

Disconnect from the
instrument
ScCloselnstrument()

v

End using the API
ScExit()

End

ScGetFAcqChannelCount()
ScGetFAcqChannelNumber()
ScGetFAcqChannelBits()
ScGetFAcqChannelGain()
ScGetFAcqChannelHResolution()
ScGetFAcqChannellLabel()
ScGetFAcqChannelSign()
ScGetFAcqChannelType()
ScGetFAcqChannelUnit()

IM D165-01EN

215

2.3 Basic Flow of Using the API

Unmanaged Application

The basic flow of using the APl and a sample code for C++ (unmanaged application) are
provided below.
Error procedures are omitted.

1. Initialize the API (required).
#include "ScSDK.h"

ScInit () ;

2. Open the instrument (DL950/SL2000) and create a handle (required).
After opening the instrument, use this handle to access the instrument.
ScHandle handle;

ScOpenInstrument (SC WIRE USB, "91K225903", &handle);

3. Get a list of waveform data files (ScGetFAcgFileName is necessary for opening files).
Get a list of waveform data files recorded using flash acquisition.
int facgCount;
char name[500][64];
ScGetFAcgCount (handle, &facgCount);
for(int i = 0; i < facgCount; i++){
ScGetFAcgFileName (handle, i+1, &name[i] [0]);
}

4. Open a waveform data file (required).
Open a waveform data file you want to transmit data from. Use a file name obtained in
step 3.
ScOpenFAcgData (handle, name);

5. Get the number of channels and the channel numbers in the waveform data file (channel
numbers obtained with ScGetFAcqChannleNumber are necessary to get waveform
data).

Get the number of channels and the channel numbers contained in the opened

waveform data file.

int chCount;

int chNo[5007];

int subChNo[500];

ScGetFAcgChannelCount (handle, &chCount) ;

for(int i = 0; i < chCount; i++) {
ScGetFAcgChannelNumber (handle, i+1, &chNo[i], &subChNo[i]);

IM D165-01EN

2.3 Basic Flow of Using the API

6. Get the setup information of all the channels contained in the waveform data file.
Using the channel numbers obtained in step 5, get the setup information of all the
contained channels. The obtained setup information is used for purposes such as
converting the waveform data of each channel into physical values.
char type[500][16];
char label[500]1[32];
int bits[500];
double gain[500];
double offset[500];
double hreso[500];
for(int i = 0; i < chCount; i++) {

ScGetFAcgChannelBits (handle, chNo[i], subChNo[i], &bits[i]);
ScGetFAcgChannelGain (handle, chNo[i], subChNo[i], &gain[i]);
ScGetFAcgChannelOffset (handle, chNo[i], subChNo[i],
soffset[i]);

ScGetFAcgChannelHResolution (handle, chNo[i], subChNo[i],
&bits[i], &hreso[i]);

ScGetFAcgChannellabel (handle, chNo[i], subChNo[i],
&label[i]);

ScGetFAcgChannelType (handle, i, chNo[i], subChNo[i],
&typelil);

}

7. Get the waveform data of all the channels
Using the channel numbers obtained in step 5, get the waveform data of all the
contained channels.
__int64 length;
char buff[1000000];
int rcv_len;
for(int 1 = 0; 1 < chCount; 1i++){
ScSetFAcgChannelNumber (handle, chNo[i], subChNo[i]);
ScGetFAcgDatalLength (handle, &length);

while (1) {
ScGetFAcgData (handle, buff, sizeof (buff), &rcv len);
if (rcv_len == 0) {

// no more data

break;

}

As shown in the example above, all the data of the contained channels can be
obtained by repeating ScGetFAcqData until rcv_len becomes zero. Note that you can
specify the maximum data size to read at one time using ScSetFAcgDataSize.

8. Disconnect from the instrument (required).
The handle is invalidated when this API function is called.
ScCloseInstrument (handle) ;

9. Close the API (required).
ScExit () ;

IM D165-01EN 2-17

2.3 Basic Flow of Using the API

Managed Application

The basic flow using the APl and a sample code for C# (managed application) are
provided below.
Error procedures are omitted.

1. Initialize the API (required).
Add ScSDKNet.dll to References of the Visual Studio Solution Explorer in advance.
The name space is ScCSDKNet, and the APl is defined as methods in the ScSDK
class.
using ScSDKNet;

ScSDK api = new ScSDKNet.ScSDK() ;
api.ScInit();

2. Open the instrument (DL950/SL2000) and create a handle (required).
After opening the instrument, use this handle to access the instrument.
int handle;
api.ScOpenInstrument (ScSDK.SC WIRE USB, "91K225903",

out handle) ;

3. Get a list of waveform data files (ScGetFAcqFileName is necessary for opening files).
Get a list of waveform data files recorded using flash acquisition.
int facgCount;
string[] name = new string[500];
api.ScGetFAcgCount (handle, out facgCount);
for(int i = 0; 1 < facgCount; i++){
api.ScGetFAcgFileName (handle, i+1, out name([i]);
}

4. Open a waveform data file (required).
Open a waveform data file you want to transmit data from. Use a file name obtained in
step 3.
api.ScOpenFAcgData (handle, fileName) ;

5. Get the number of channels and the channel numbers in the waveform data file (channel
numbers obtained with ScGetFAcqChannleNumber are necessary to get waveform
data).

Get the number of channels and the channel numbers contained in the opened
waveform data file.
int chCount;
int[] chNo = new int[500];
int[] subChNo = new int[500];
api.ScGetFAcgChannelCount (handle, out chCount);
for(int i = 0; i < chCount; i++) {
api.ScGetFAcgChannelNumber (handle, i+1, out chNo[i],
out subChNo[i]);

2-18 IM D165-01EN

2.3 Basic Flow of Using the API

6. Get the setup information of all the channels contained in the waveform data file.
Using the channel numbers obtained in step 5, get the setup information of all the
contained channels. The obtained setup information is used for purposes such as
converting the waveform data of each channel into physical values.
char([] type = new char[500];
char[] label = new char[500];
int[] bits = new int[500];
double[] gain = new double[500];
double[] offset = new double[500];
double[] hreso= new double[500];
for(int i = 0; i < chCount; i++) {

api.ScGetFAcgChannelBits (handle, chNo[i], subChNo[i],
out bits[il]);

api.ScGetFAcgChannelGain (handle, chNo[i], subChNo[i],
out gain[i]);

api.ScGetFAcgChannelOffset (handle, chNo[i], subChNo[i],
out offset[i]);

api.ScGetFAcgChannelHResolution (handle, chNo[i], subChNo[i],
out bits[i], out hreso[i]);
api.ScGetFAcgChannellLabel (handle, chNo[i], subChNo[i],
out label[i]);

apil.ScGetFAcgChannelType (handle, i, chNo[i], subChNo[i],
out typelil);

}

6. Get the waveform data of all the channels
Using the channel numbers obtained in step 5, get the waveform data of all the
contained channels.
__int64 length;
byte[] buff = new byte[1000000];
int rcv_len;
for(int i = 0; i < chCount; i++) {
api.ScSetFAcgChannelNumber (handle, chNo[i], subChNo[i]);
api.ScGetFAcgbatalLength (handle, &length);
while (1) {
api.ScGetFAcgData (handle, buff, buff.Length, out rcv len);
if (rcv_len == 0){
// no more data

break;

}

As shown in the example above, all the data of the contained channels can be
obtained by repeating ScGetFAcqData until rcv_len becomes zero. Note that you can
specify the maximum data size to read at one time using ScSetFAcgDataSize.

8. Disconnect from the instrument (required).
The handle is invalidated when this API function is called.
api.ScCloseInstrument (handle) ;

9. Close the API (required).
api.ScExit ()

IM D165-01EN 2-19

Chapter 3

API Functional Specifications

3.1

Definition of Class

This section explains the API class definitions.

Class ScEventListener
Function:

Syntax:

Details:

Event listener class for receiving events (C++ only)

class ScEventListener {
public:
/¥
*\brief Overrun handler
*\param handle API handle

*\param\ reserve
*/

virtual void handleEventScCallListener(ScHandle handle, __int64 reserve){}
virtual void handleEventScTrigend(ScHandle handle){}

The events that you can register are the over run events for free run mode and the
trigger end events for synchronous trigger mode.

Overwriting handleEventScCallListener causes the same method to be called
automatically when an overrun event occurs.

Overwriting handleEventScTrigEnd causes the same method to be called automatically
when a trigger end event occurs.

Use ScAddEventListener to create instances.

IM D165-01EN

3-1

3.2 Definition of Constants

SC_SUCCESS
Description:
Normal
Syntax:
#define SC_SUCCESS

Details:
Definition of a result returned by API functions

SC_ERROR
Description:
Errors
Syntax:
#define SC_ERROR

Details:
Definition of a result returned by API functions

SC_UNOPENED
Description:
File not specified
Syntax:
#define SC_UNOPENED

Details:
Definition of a result returned by API functions (flash acquisition data access library function)

SC_USE_ACQMEMORY
Description:
Measurement data exists in ACQ memory
Syntax:
#define SC_USE_ACQMEMORY

Details:
Definition of a result returned by ScOpenFAcqData

SC_ERR_UNOPENED
Description:
Error when file not specified
Syntax:
#define SC_ERR_UNOPENED

Details:
Definition of a result returned by API functions (flash acquisition data access library function)

SC_ERR_RUNNING
Description:
Error when the instrument to which the connection was made is measuring
Syntax:
#define SC_ERR_RUNNING

Details:
Definition of the return value when Open functions such as ScOpenlinstrument are executed

3-2 IM D165-01EN

3.2 Definition of Constants

SC_ERR_SYNC_CONN

Description:
Error when the instrument to which the connection was made is in multi-unit

synchronization connection

Syntax:
#define SC_ERR_SYNC_CONN
Details:
Definition of the return value when Open functions such as ScOpeninstrument are
executed
SC_ERR_SYNC_SUB
Description:
Error for a sub unit in multi-unit synchronization
Syntax:
#define SC_ERR_SYNC_SUB
Details:

Definition of the return value when Open functions such as ScOpeninstrument and data
acquisition related functions are executed.

SC_ERR_RECORDER

Description:
Error when the instrument to which the connection was made is in recorder mode

Syntax:
#define SC_ERR_RECORDER

Details:
Definition of the return value when Open functions such as ScOpenlinstrument are
executed

SC_ERR_MODE

Description:
Error when the mode and instrument settings differ from the those specified when
reconnecting

Syntax:
#define SC_ERR_MODE

Details:

Definition of the return value when ScReopeninstrument is executed

SC_ERR_NOTAPPLICABLE

Description:
Error when the connected instrument is other than the DL950/SL2000 series or an

incompatible version.
Syntax:
#define SC_ERR_NOTAPPLICABLE

Details:
Definition of the return value when Open functions such as ScOpeninstrument are

executed

IM D165-01EN 3-3

3.2 Definition of Constants

SC_ERR_NODATA
Description:
Error when there is no file name for the waveform data corresponding to the specified
flash acquisition number or there is no waveform to save

Syntax:
#define SC_ERR_NODATA

Details:
Definition of the return value when ScGetFAcqFileName and ScSaveTriggerWDF are
executed

SC_ERR_PARAMETER
Description:
Error when the function parameter is invalid
Syntax:
#define SC_ERR_PARAMETER

Details:
Definition of the value returned when a function parameter is invalid.

SC_WIRE_USBTMC

Description:
USB wire type (YTUSB)

Syntax:
#define SC_WIRE_USBTMC

Details:
Definition of a wire type for connecting to the DL950/SL2000 series
* Select this to use a USB (TMCTL standard driver) connection.

SC_WIRE_VISAUSB

Description:
USB wire type (VISAUSB)

Syntax:
#define SC_WIRE_VISAUSB

Details:
Definition of a wire type for connecting to the DL950/SL2000 series
* Select this to use a USB (when a VISA driver is in use) connection.

SC_WIRE_VXI11

Description:
Ethernet wire type (VXI11)

Syntax:
#define SC_WIRE_VXI11

Details:
Definition of a wire type for connecting to the DL950/SL2000 series
* Select this to use GigaBitEther.

34 IM D165-01EN

3.2 Definition of Constants

SC_WIRE_HISLIP

Description:
Ethernet wire type (HiSLIP)

Syntax:
#define SC_WIRE_HISLIP

Details:
Definition of a wire type for connecting to the DL950/SL2000 series
* Select this to use the 10G high-speed data transmission mode.

SC_FREERUN

Description:
Free run operation

Syntax:
#define SC_FREERUN

Details:
Specify this to implement waveform acquisition in free run mode.
Data received from the DL950/SL2000 is passed as-is to the program as block data.

SC_TRIGGER

Description:
Synchronous trigger mode

Syntax:
#define SC_TRIGGER

Details:
Specify this to acquire waveform data in synchronous trigger mode.
The DL950/SL2000 waveform acquisition sequence is explicitly controlled using the API.

SC_TRIGGER_ASYNC

Description:
Asynchronous trigger mode

Syntax:
#define SC_TRIGGER_ASYNC

Details:
Specify this to acquire waveform data in asynchronous trigger mode.
Waveform acquisition will take place on the DL950/SL2000 regardless of whether data
acquisition has been completed.

SC_NOMODE

Description:
No mode specified for connection

Syntax:
#define SC_NOMODE

Details:
Specify this when connecting to the instrument under measurement or using the Flash
Acquisition Data Access Library function.

IM D165-01EN 35

3.2 Definition of Constants

SC_EVENTTYPE_OVERRUN

Description:
Event type (overrun)

Syntax:
#define SC_EVENTTYPE_OVERRUN

Details:
Specify the event type for registering an overrun event callback in free run mode.
This is used only with the .NET version (C#).

SC_EVENTTYPE_TRIGGEREND

Description:
Event type (trigger end)

Syntax:
#define SC_EVENTTYPE_TRIGEREND

Details:
Specify the event type for registering a trigger end event callback in trigger mode.
This is used only with the .NET version (C#).

SC_SIZE_16MB
Description:
Data transmission size at 16 MiB
Syntax:
#define SC_SIZE_16MB

Details:
Definition of the data transmission size

SC_SIZE_32MB
Description:
Data transmission size at 32 MiB
Syntax:
#define SC_SIZE_32MB

Details:
Definition of the data transmission size

SC_SIZE_64MB
Description:
Data transmission size at 64 MiB
Syntax:
#define SC_SIZE 64MB

Details:
Definition of the data transmission size

SC_SIZE_128MB
Description:
Data transmission size at 128 MiB
Syntax:
#define SC_SIZE_128MB

Details:
Definition of the data transmission size

3-6 IM D165-01EN

3.2 Definition of Constants

SC_SIZE_256MB

Description:
Data transmission size at 256 MiB

Syntax:
#define SC_SIZE_256MB

Details:
Definition of the data transmission size

SC_SIZE_512MB

Description:
Data transmission size at 512 MiB

Syntax:
#define SC_SIZE_512MB

Details:
Definition of the data transmission size

SC_10GMODE_ON

Description:
10Gbps high-speed transmission mode enabled

Syntax:
#define SC_10GMODE_ON

Details:

Used to set the 10Gbps high-speed transmission mode.

SC_10GMODE_OFF
Description:
10Gbps high-speed transmission mode disabled

Syntax:
#define SC_10GMODE_OFF

Details:

Used to set the 10Gbps high-speed transmission mode.

SC_DRIVE_IDRIVE
Description:
Set the current drive to IDRive.
Syntax:
#define SC_DRIVE_IDRIVE

Details:
Used to set the current drive.

SC_DRIVE_NETWORK
Description:
Set the current drive to NETWork.
Syntax:
#define SC_DRIVE_NETWORK

Details:
Used to set the current drive.

IM D165-01EN

3-7

3.2 Definition of Constants

SC_DRIVE_SD

Description:
Set the current drive to SD.

Syntax:
#define SC_DRIVE_SD

Details:
Used to set the current drive.

SC_DRIVE_USB_0

Description:
Set the current drive to USB-0.

Syntax:
#define SC_DRIVE_USB_0

Details:
Used to set the current drive.

SC_DRIVE_USB_1

Description:
Set the current drive to USB-1.

Syntax:
#define SC_DRIVE_USB_1

Details:
Used to set the current drive.

SC_DRIVE_FLASH
Description:
Set the current drive to FLASh.

Syntax:
#define SC_DRIVE_FLASH

Details:
Used to set the current drive.

SC_FILE_ETE_ALL

Description:
Set the extension to all for retrieving files.

Syntax:
#define SC_FILE_ETE_ALL

Details:
Used when getting a list of files.

SC_FILE_ETE_SET
Description:

Specify the *.SET extension for retrieving files.

Syntax:
#define SC_FILE_ETE_SET

Details:
Used when getting a list of files.

3-8

IM D165-01EN

3.2 Definition of Constants

SC_FILE_ETE_WDF

Description:

Specify the *.WDF extension for retrieving files.

Syntax:
#define SC_FILE_ETE_WDF

Details:
Used when getting a list of files.

SC_FILE_ETE_BMP

Description:

Specify the *.BMP extension for retrieving files.

Syntax:
#define SC_FILE_ETE_BMP

Details:
Used when getting a list of files.

SC_FILE_ETE_PNG

Description:

Specify the *.PNG extension for retrieving files.

Syntax:
#define SC_FILE_ETE_PNG

Details:
Used when getting a list of files.

SC_FILE_ETE_JPG
Description:
Specify the *.JPG extension for retrieving files.
Syntax:
#define SC_FILE_ETE_JPG

Details:
Used when getting a list of files.

SC_FILE_ETE_SNP
Description:
Specify the *.SNP extension for retrieving files.
Syntax:
#define SC_FILE_ETE_SNP

Details:
Used when getting a list of files.

SC_FILE_ETE_SBL
Description:
Specify the *.SBL extension for retrieving files.
Syntax:
#define SC_FILE_ETE_SBL

Details:
Used when getting a list of files.

IM D165-01EN

3-9

3.2 Definition of Constants

SC_FILE_ETE_CSV

Description:
Specify the *.CSV extension for retrieving files.

Syntax:
#define SC_FILE_ETE_CSV

Details:
Used when getting a list of files.

SC_FILE_ETE_MAT
Description:
Specify the *.MAT extension for retrieving files.

Syntax:
#define SC_FILE_ETE_MAT

Details:
Used when getting a list of files.

SC_SYNC_OFF
Description:
Indicates that the instrument is not using the multi-unit synchronization feature.
Syntax:
#define SC_SYNC_OFF

Details:
Used when getting the handle list, device list, or status information.

SC_SYNC_CONN
Description:
Indicates that the instrument is in multi-unit synchronization connection standby.
Syntax:
#define SC_SYNC_CONN

Details:
Used when getting the device list or status information.

SC_SYNC_MAIN
Description:
Indicates that the instrument is running as the main unit.
Syntax:
#define SC_SYNC_MAIN

Details:
Used when getting the handle list, device list, or status information.

SC_SYNC_SUB
Description:
Indicates that the instrument is running as a sub unit.
Syntax:
#define SC_SYNC_SUB

Details:
Used when getting the handle list, device list, or status information.

3-10 IM D165-01EN

3.2 Definition of Constants

SC_STAT_STOPPED

Description:
Indicates that measurement is stopped on the instrument.

Syntax:
#define SC_STAT_STOPPED

Details:
Used when getting the status information.

SC_STAT_RUNNING

Description:

Indicates that the instrument is measuring.
Syntax:

#define SC_STAT_RUNNING
Details:

Used when getting the status information.

SC_STAT_INTERNAL

Description:

Indicates that the instrument’s time base is set to internal.
Syntax:

#define SC_ STAT_INTERNAL
Details:

Used when getting the status information.

SC_STAT_EXTERNAL

Description:
Indicates that the instrument’s time base is set to external.

Syntax:
#define SC_STAT_EXTERNAL

Details:
Used when getting the status information.

SC_STAT_SSD

Description:
Indicates that the instrument’s real-time recording is set to SSD recording.

Syntax:
#define SC_STAT_SSD

Details:
Used when getting the status information.

SC_STAT_FACQ

Description:
Indicates that the instrument’s real-time recording destination is flash acquisition.

Syntax:
#define SC_STAT_FACQ

Details:
Used when getting the status information.

IM D165-01EN

3-1

3.2 Definition of Constants

SC_STAT _TRIGGER

Description:
Indicates that the instrument’s acquisition mode is trigger.

Syntax:
#define SC_STAT_TRIGGER

Details:
Used when getting the status information.

SC_STAT_FREERUN
Description:
Indicates that the instrument’s acquisition mode is free run.
Syntax:
#define SC_STAT_FREERUN

Details:
Used when getting the status information.

SC_STAT _OFF
Description:
Indicates that the instrument’s status setting is off.
Syntax:
#define SC_STAT_OFF

Details:
Used when getting the status information.

SC_STAT_ON
Description:
Indicates that the instrument’s status setting is on.
Syntax:
#define SC_STAT_ON

Details:
Used when getting the status information.

SC_STAT_ST1
Description:
Indicates that the instrument’s internal storage option is ST1.
Syntax:
#define SC_STAT_ST1

Details:
Used when getting the status information.

SC_STAT _ST2
Description:
Indicates that the instrument’s internal storage option is ST2.
Syntax:
#define SC_STAT_ST2

Details:
Used when getting the status information.

312 IM D165-01EN

3.2 Definition of Constants

SC_SORT_NAME_ASC
Description:
Get a list of files in ascending order by file name.
Syntax:
#define SC_SORT_NAME_ASC

Details:
Used when getting a list of files.

SC_SORT_NAME_DESC
Description:
Get a list of files in descending order by file name.

Syntax:
#define SC_SORT_NAME_DESC

Details:
Used when getting a list of files.

SC_SORT_DATE_ASC
Description:
Get a list of files in ascending order file update date.
Syntax:
#define SC_SORT_DATE_ASC

Details:
Used when getting a list of files.

SC_SORT_DATE_DESC
Description:
Get a list of files in descending order by file update date.

Syntax:
#define SC_SORT_DATE_DESC

Details:
Used when getting a list of files.

SC_SORT_SIZE_ASC
Description:
Get a list of files in ascending order by file size.
Syntax:
#define SC_SORT_SIZE_ASC

Details:
Used when getting a list of files.

SC_SORT_SIZE_DESC
Description:
Get a list of files in descending order by file size.
Syntax:
#define SC_SORT_SIZE_DESC

Details:
Used when getting a list of files.

IM D165-01EN 313

3.3 Definitions of Data Structures

HandleList
Description:
Handle list
Syntax:
struct HandleList {
ScHandle handle; // handle of the connected instrument
int sync; /I multi-unit synchronization state of the connected instrument
char unit[32]; // unit name
%
Details:
Used when getting a list of handles.
The following fixed values are stored for each parameter.
Sync SC_SYNC_OFF / SC_SYNC_MAIN / SC_SYNC_SUB
DevicelList
Description:
Device list
Syntax:
struct DevicelList {
char adr[64]; // address
int sync; /I multi-unit synchronization state of the connected instrument
char name[32]; // instrument name
char unit[32]; // unit name
%
Details:
Used when getting a list of devices.
The following fixed values are stored for each parameter.
Sync SC_SYNC_OFF / SC_SYNC_CONN/SC_SYNC_MAIN/SC_SYNC_SUB
Statusinfo
Description:
Status information
Syntax:
struct Statuslinfo {
int Running; /I measurement state
int Sync; /I multi-unit synchronization connection setting
int TimeBase; // time base
int RealTime; /I real-time recording setting
int AcgMode; /I acquisition mode
int DualCapture; // dual capture setting
int GONogo; /I GONogo setting

int StorageOpt;

// storage option

3-14

IM D165-01EN

3.3 Definition of Data Structures

Filelnfo

Details:
Used when getting the device settings.
The following fixed values are stored for each parameter.
Running SC_STAT_STOPPED / SC_STAT_RUNNING
Sync SC_SYNC_OFF / SC_SYNC_CONN/SC_SYNC_MAIN/SC_SYNC_SUB
SystemMode SC_STAT_SCOPE / SC_STAT_RECODER
TimeBase SC_STAT_INTERNAL / SC_STAT_EXTERNAL
RealTime SC_STAT_OFF / SC_STAT_SSD/SC_STAT_FACQ
AcgMode SC_STAT_TRIGGER / SC_STAT_FREERUN
DualCapture SC_STAT_OFF /SC_STAT_ON
GONogo SC_STAT_OFF / SC_STAT_ON
StorageOpt SC_STAT_OFF / SC_STAT_ST1/SC_STAT_ST2
Description:
File information
Syntax:
struct Filelnfo {
char name[256]; /I file name
unsigned int size; /I file size
char date[10]; /I file storage date
char time[5]; /[file storage time
char rw[5]; // read/write
2
Details:

Used when getting the file list and file list information.

IM D165-01EN

3-15

Chapter 4 API Detailed Specifications

41 Common API

Scinit
Description:
Initialize the API
Syntax:
[C++]
ScResult Sclnit(void);
[C#]
int Scinit();
Parameters:
No
Return value:
SC_SUCCESS Success
SC_ERROR Initialization error (already initialized)
Details:
Call once at the start of using the library.
Example [C++]:
#include "ScSDK.h"

if (ScInit() == SC SUCCESS) ({

}

Example [C#]:
using ScSDKNet;

ScSDKNet.ScSDK api = new ScSDKNet.ScSDK() ;
if (api.ScInit() == ScSDK.SC SUCCESS)
{

ScExit
Description:
End using the API
Syntax:
[C++]
ScResult ScExit(void);
[C#]
int ScEXxit();
Parameters:
No
Return value:
SC_SUCCESS Success
SC_ERROR Error (already terminated or not initialized)
Details:
Call once at the end of using the API.

IM D165-01EN

4.1 Common API

ScOpeninstrument
Description:

Syntax:

Open the instrument

[C+4]

ScResult ScOpenlnstrument(int wire, char* address, int mode, ScHandle* rHndl);
[C#H]

int ScOpenlnstrument(int wire, string address, int mode, out int rHndl);

Parameters:

[IN] wire Wire type
SC_WIRE_USBTMC USBTMC (YTUSB)
SC_WIRE_VISAUSB VISAUSB

SC_WIRE_VXI11 VXI-11
SC_WIRE_HISLIP HiSLIP
[IN] address Connection destination address
(instrument serial number for USB)
[IN] mode Connection mode
SC_FREERUN Free run
SC_TRIGGER Synchronous trigger mode
SC_TRIGGER_ASYNC Asynchronous trigger mode
SC_NOMDOE No connection mode
[OUT] rHNdI Instrument handle
Return value:
SC_SUCCESS Connection successful
SC_ERROR Connection error
SC_ERR_RUNNING Error during measurement
SC_ERR_SYNC_CONN Error during multi-unit synchronization connection
SC_ERR_SYNC_SUB Multi-unit synchronization sub unit connection error
SC_ERR_RECORDER Recorder mode error
SC_ERR_NOTAPPLICABLE Target device error
Details:
Connects to the instrument and returns the instrument handle.
This handle is passed to the APIs to communicate with the instrument.
When a connection is established, the waveform acquisition conditions of the measuring
instrument are set automatically according to the mode parameter.
When SC_NOMODE is selected, the currently set connection mode is maintained.
If a mode other than SC_NOMODE is selected, an error is generated if the instrument is
measuring.
Note:

Multiple connections to a single instrument is not possible.
To use 10Gbps Ethernet, select SC_WIRE_HISLIP.
Connection is not possible when to DL950/SL2000 is in recorder mode.

Example [C++]:

ScHandle hndl;
if (ScOpenInstrument (SC WIRE USB, "91K225895", SC FREERUN, &hndl)
== SC_SUCCESS) {

4-2

IM D165-01EN

4.1 Common API

Example [C#]:

int hndl;
if (api.ScOpenInstrument (ScSDK.SC WIRE USB, "91K225895" ,
ScSDK.SC_FREERUN, out hndl) == ScSDK.SC_SUCCESS) {
}
ScReopeninstrument
Description:
Open the instrument (possible on an instrument that is measuring)
Syntax:
[C++]
ScResult ScReopenlinstrument(int wire, char* address, int mode, ScHandle* rHndl);
[C#]
int ScReopenlInstrument(int wire, string address, int mode, out int rHndl);
Parameters:

[IN] wire Wire type
SC_WIRE_USBTMC USBTMC (YTUSB)
SC_WIRE_VISAUSB VISAUSB

SC_WIRE_VXI11 VXI-11
SC_WIRE_HISLIP HiSLIP
[IN] address Connection destination address
(instrument serial number for USB)
[IN] mode Connection mode
SC_FREERUN Free run
SC_TRIGGER Synchronous trigger mode
SC_TRIGGER_ASYNC Asynchronous trigger mode
[OUT] rHNdI Instrument handle
Return value:
SC_SUCCESS Connection successful
SC_ERROR Connection error
SC_ERR_SYNC_CONN Error during multi-unit synchronization connection
SC_ERR_SYNC_SUB Multi-unit synchronization sub unit connection error
SC_ERR_RECORDER Recorder mode error
SC_ERR_MODE Wrong mode error
SC_ERR_NOTAPPLICABLE Target device error
Details:
Connects to the instrument that is currently measuring and returns the instrument handle.
This handle is passed to the APIs to communicate with the instrument.
When measurement is stopped, the specified mode parameter is automatically passed to
the measuring instrument.
Note:

Multiple connections to a single instrument is not possible.

To use 10Gbps Ethernet, select SC_WIRE_HISLIP.

Connection is not possible when to DL950/SL2000 is in recorder mode.

If a measurement is in progress and the specified mode parameter is different from the
state of the measuring instrument, an error is returned.

IM D165-01EN

4-3

4.1 Common API

Example [C++]:
ScHandle hndl;
if (ScReopenInstrument (SC WIRE USB, "91K225895",
SC_FREERUN, &hndl) == SC SUCCESS) {

}
Example [C#]:

int hndl;
if (api.ScReopenlInstrument (ScSDK.SC WIRE USB, "91K225895" ,
ScSDK.SC_FREERUN, out hndl) == ScSDK.SC_SUCCESS) {
}
ScCloselnstrument
Description:
Close the instrument
Syntax:
[C+t]
ScResult ScCloselnstrument(ScHandle hndl);
[C#]
int ScCloselnstrument(int hndl);
Parameters:
[IN] hndl Instrument handle
Return value:
SC_SUCCESS Success
SC_ERROR Error (not connected or already disconnected)
Details:
Disconnects from the instrument connected using ScOpenlinstrument.
If the instrument is measuring, disconnection takes time, but it can be done in a short
time by decreasing the timeout period with ScSetTriggerTimeout.
Note:
The handle is invalidated when this APl command is called.
ScOpeninstrumentEx
Description:
Connect to an instrument in multi-unit synchronization
Syntax:

[C++]

ScResult ScOpenlinstrumentEx(int wire, char* address, int mode, HandleList* List, int max,
int* ListCount);

[C#]

int ScOpenlnstrumentEx(int wire, string address, int mode, out HandleList[] List, int max,
out int ListCount);

4-4 IM D165-01EN

4.1 Common API

Parameters:
[IN] wire Wire type
SC_WIRE_USBTMC USBTMC (YTUSB)
SC_WIRE_VISAUSB VISAUSB
SC_WIRE_VXI11 VXI-11
SC_WIRE_HISLIP HiSLIP
[IN] address Connection destination address of the main unit
(instrument serial number in the case of USB)
[IN] mode Connection mode
SC_FREERUN Free run
SC_TRIGGER Synchronous trigger mode
SC_TRIGGER_ASYNC Asynchronous trigger mode
SC_NOMDOE No connection mode
[OUT] List Instrument handle list
[IN] max Maximum size of the instrument handle list
[OUT] ListCount Number of instrument handle lists
Return value:
SC_SUCCESS Connection successful
SC_ERROR Connection error
SC_ERR_RUNNING Error during measurement
SC_ERR_SYNC_CONN Error during multi-unit synchronization connection
SC_ERR_SYNC_SUB Multi-unit synchronization sub unit connection error
SC_ERR_RECORDER Recorder mode error
SC_ERR_NOTAPPLICABLE Target device error
Details:
Connects to the sub units from the address of the main unit in multi-unit synchronization
and obtains the handle of each instrument.
Performs the connection process of this API for the instruments using the instrument
handles obtained from the API of the TMCTL library.
This handle is passed to the APIs to communicate with the instrument.
When a connection is established, the waveform acquisition conditions of the measuring
instrument are set automatically according to the mode parameter.
Specify the maximum size of the array for the max parameter.
Note:

Multiple connections to a single instrument is not possible.

To use 10Gbps Ethernet, select SC_WIRE_HISLIP.

Connection is not possible when to DL950/SL2000 is in recorder mode.

The only instrument handle used in this API is assumed to be that of the DL950/SL2000
connected via the TMCTL library API. It will not work properly with an instrument handle
acquired otherwise.

IM D165-01EN 4-5

4.1 Common API

ScReopeninstrumentEx
Description:

Connect to an instrument in multi-unit synchronization (possible on an instrument that is
measuring)

Syntax:
[C++]
ScResult ScReopeninstrumentEx(int wire, char* address, int mode, HandleList* List,
int max, int* ListCount);
[C#]
int ScReopenlInstrumentEx(int wire, string address, int mode, out HandleList[] List,
int max, out int ListCount);

Parameters:

[IN] wire Wire type
SC_WIRE_USBTMC USBTMC (YTUSB)
SC_WIRE_VISAUSB VISAUSB

SC_WIRE_VXI11 VXI-11
SC_WIRE_HISLIP HiSLIP
[IN] address Connection destination address
(instrument serial number for USB)
[IN] mode Connection mode
SC_FREERUN Free run
SC_TRIGGER Synchronous trigger mode
SC_TRIGGER_ASYNC Asynchronous trigger mode
[OUT] List Instrument handle list
[IN] max Maximum size of the instrument handle list
[OUT] ListCount Number of instrument handle lists
Return value:
SC_SUCCESS Connection successful
SC_ERROR Connection error
SC_ERR_SYNC_CONN Error during multi-unit synchronization connection
SC_ERR_SYNC_SUB Multi-unit synchronization sub unit connection error
SC_ERR_RECORDER Recorder mode error
SC_ERR_MODE Wrong mode error
SC_ERR_NOTAPPLICABLE Target device error
Details:
Connects to the instrument that is currently measuring and returns the instrument handle.
This handle is passed to the APIs to communicate with the instrument.
When measurement is stopped, the specified mode parameter is automatically passed to
the measuring instrument.
Note:

Multiple connections to a single instrument is not possible.

To use 10Gbps Ethernet, select SC_WIRE_HISLIP.

Connection is not possible when to DL950/SL2000 is in recorder mode.

If a measurement is in progress and the specified mode parameter is different from the
state of the measuring instrument, an error is returned.

46

IM D165-01EN

4.1 Common API

ScCloselnstrumentEx
Description:
Disconnect from an instrument in multi-unit synchronization
Syntax:
[C++]
ScResult ScCloselnstrumentEx(HandleList* List, int ListCount);
[C#]
int ScCloselnstrumentEx(HandleList[] List, int ListCount);
Parameters:
[IN] List Instrument handle list
[IN] ListCount Number of instrument handle lists
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:
Disconnects from the instrument connected using ScOpeninstrumentEx.
Note:
The handle of this APl is invalidated when this API function is called.
ScSetControl
Description:
Send a communication command
Syntax:
[C++]
ScResult ScSetControl(ScHandle hndl, char* command);
[CH#]
int ScSetControl(int hndl, string command);
Parameters:
[IN] hndl Instrument handle
[IN] command Communication command string
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:
Sends a communication command to the instrument.
Note:

The return value cannot be used to determine communication command errors. It only
indicates whether the command was sent successfully.

IM D165-01EN 4-7

4.1 Common API

ScGetControl
Description:
Receive a response to a communication command
Syntax:
[C++]
ScResult ScGetControl(ScHandle hndl, char* buff, int buffLen, int* receiveLen);
[C#]
int ScGetControl<DT>(int hndl, ref DT[] buff, int buffLen, out int receiveLen);
Parameters:
[IN] hndl Instrument handle
[OUT] buff Receive buffer
[IN] buffLen Buffer size
[OUT] receiveLen Length of the received response
Return value:
SC_SUCCESS Success
SC_ERROR Error (no data to be received)
Details:
Receives a response to a communication command sent in advance from the instrument.
Note:

An error occurs if a communication command has not been sent in advance.

Example [C++]:
char buff[BUFSIZ];
int receivelen;
if (ScGetControl (hndl, buff, sizeof (buff), &receivelen)
== SC SUCCESS) {

}
Example [C#]:
byte[] buff = new byte[256];
int receivelen;
if (api.ScGetControl<byte>(hndl, ref buff, buff.Length,
out receiveLen) == ScSDK.SC SUCCESS) ({
string msg = System.Text.Encoding.ASCII.GetString (buff);

printMessage (msg) ;

IM D165-01EN

4.1 Common API

ScGetBinaryData
Description:
Receive binary data
Syntax:
[C++]
ScResult ScGetBinaryData(ScHandle hndl, char* command, char* buff, int buffLen,
int* receivelLen, int* endFIg);
[C#]
int ScGetBinaryData<DT>(int hndl, string command, ref DT[] buff, int buffLen,
out int receivelLen, out endFlg);
Parameters:
[IN] hndl Instrument handle
[IN] command Communication command for requesting binary data
Specify 0 (null pointer) to receive data being received.
[OUT] buff Buffer for receiving binary data
[IN] buffLen Size of the buffer for receiving binary data (bytes)
[OUT] receiveLen Size of the received binary data (bytes)
[OUT] endFlg Receive end flag
0 Receiving (remaining data available)
1 Receive end
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:
Sends a command for querying binary data and receives the response.
When the buffer size specified by buffLen is smaller than the size of the binary data
actually received, endFlg is set to zero.
To continue receiving binary data when the ScGetBinaryData, ScGetLatchAcqData,
ScGetAcqData’s receive complete flag is not 1, set the command parameter to 0 (null
pointer).
Note:

The behavior when a command that does not send binary data is specified is undefined.

Example [C++]:
char buff[1024];
int receivelen;
if (ScGetBinaryData (hndl, ":MONitor:SEND:ALL?", buff,
sizeof (buff), &receivelLen) == SC SUCCESS) {

}
Example [C#]:
byte[] buff = new byte[1024];
int receivelen;
if (api.ScGetBinaryData<byte> (hndl, ":MONitor:SEND:ALL?",
ref buff, buff.Length, out receivelen) == ScSDK.SC SUCCESS) {

IM D165-01EN 4-9

4.1 Common API

ScQueryMessage

Description:

Issue a command and receive its response
Syntax:

[C++]

ScResult ScQueryMessage(ScHandle hndl, char* command, char* buff, int buffLen,
int* receivelLen);

[CH#]

int ScQueryMessage(int hndl, string command, out string buff, int getLen,

out int receivelLen);

Parameters:
[IN] hndl Instrument handle
[IN] command Communication Commands
[OUT] buff Receive buffer
[IN] buffLen Length of the receive buffer (in bytes)
Length to retrieve in the case of .NET version
[OUT] receivelLen Length of the received response
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:
You can perform communication command transmission and response reception with
this single APl method.
Note:

You cannot use this APl method for commands that do not return responses.
In the case of C# (.NET version), specify the number of bytes to receive, not the length of
the buffer size.
Example [C#]:
char buff[256];
int receivelen;
if (ScQueryMessage (hndl, "*idn?", buff, sizeof (buff), &receivelen)
== SC_SUCCESS) {

}

Example [C#]:
string buff;
int receivelen;
if (api.ScQueryMessage (hndl, "*idn?", out buff, 256,
out receivelen) == ScSDK.SC_ SUCCESS)
{

IM D165-01EN

4.1 Common API

ScSet10GMode
Description:
Set the 10Gbps high-speed data transmission mode
Syntax:
[C++]
ScResult ScSet10GMode(ScHandle hndl, int onoff);
[C#]
int ScSet10GMode(int hndl, int onoff);
Parameters:
[IN] hndl Instrument handle
[IN] onoff 10Gbps high-speed data transmission mode setting
0 10Gbps high-speed data transmission mode disabled
1 10Gbps high-speed data transmission mode enabled
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_PARAMETER Parameter error
Details:
Sets whether to use hardware-driven 10Gbps high-speed data transmission for data
acquisition or flash acquisition data transmission. This command can be used when the
10G option is installed.
Note:

This command is available when a 10Gbps Ethernet connection is established and the
wire type is set to HiSLIP.

Execute this command before starting waveform acquisition. (ScStart). You cannot
change this during waveform acquisition.

Execute this command before executing ScGetFAcgData. If you change the setting while
transmission is in progress, normal transmission may be impeded. In such case, close
the instrument, and start over.

Data can be transferred via 10Gbps Ethernet even if this mode is disabled, but if used
in data acquisition, overruns are more likely to occur due to reduced transmission
performance.

This function is disabled for file transfers; software transfer is used instead. Even with a
10 Gbps Ethernet connection, the data rate may be slower than with a 1 Gbps Ethernet
connection.

IM D165-01EN

4-11

4.1 Common API

ScGet10GMode
Description:
Get the 10Gbps high-speed data transmission mode setting.
Syntax:
[C++]
ScResult ScGet10GMode(ScHandle hndl, int *onoff);
[C#]
int ScGet10GMode(int hndl, out int onoff);
Parameters:
[IN] hndl Instrument handle
[OUT] onoff 10Gps high-speed data transmission mode setting
0 10Gps high-speed data transmission mode disabled
1 10Gps high-speed data transmission mode enabled
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:
Checks whether hardware-driven 10Gbps high-speed data transmission mode is enabled
for data transmission.
ScSearchDevices
Description:
Get a list of instruments connected to the specified line
Syntax:
[C++]
ScResult ScSearchDevices(int wire, DeviceList* list, int max, int* deviceCount,
char* option);
[C#]
int ScSearchDevices(int wire, out DeviceList[] list, int max, out int deviceCount,
string option);
Parameters:

[IN] wire Wire type
SC_WIRE_USBTMC USBTMC (YTUSB)
SC_WIRE_VISAUSB VISAUSB

SC_WIRE_VXI11 VXI-11
[OUT] list List of instruments
[IN] max Maximum size of the instrument list
[OUT] deviceCount Number of instrument lists
[IN] option NETWork option string
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_NOTAPPLICABLE Target line type error
SC_ERR_PARAMETER Error in the maximum size of the instrument list

Details:
The maximum number of instrument lists that can be retrieved is 128.
Specify the maximum size of the array for the max parameter.
This can be used with DL950/SL2000 with firmware version 2.01 or later.

4-12

IM D165-01EN

4.1 Common API

ScGetStatusinfo
Description:
Get the status information of the connected destination
Syntax:
[C++4]
ScResult ScGetStatusInfo(ScHandle hndl, Statusinfo *statusinfo);
[C#]
int ScGetStatusinfo(int hndl, out Statusinfo statusinfo);
Parameters:
[IN] hndl Instrument handle
[IN] statusinfo Status information of the connected destination
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:
Gets the status information of connected instruments.
ScTmcSetTimeout
Description:
Set the TMCTL timeout period
Syntax:
[C++4]
ScResult ScTmcSetTimeout(ScHandle hndl, int timeout);
[C#H]
int ScTmcSetTimeout(ScHandle hndl, int timeout);
Parameters:
[IN] hndl Instrument handle
[IN] timeout TMCTL timeout value (100-ms resolution) (0 to 65536)
Return value:
SC_SUCCESS Success
SC_ERROR Errors

Details:
The default timeout period is 30 seconds.
If set to 0, the timeout period is set to none.

IM D165-01EN

4-13

4.2 Data Acquisition Function API

ScSetMeasuringMode
Description:
Setting the Measurement Mode
Syntax:
[C+t]
ScResult ScSetMeasuringMode(ScHandle hndl, int mode);
[C#]
int ScSetMeasuringMode(int hndl, int mode);
Parameters:
[IN] hndl Instrument handle
[IN] mode Measuring Mode
SC_FREERUN Free run
SC_TRIGGER Synchronous trigger mode

SC_TRIGGER_ASYNC Asynchronous trigger mode
Return value:

SC_SUCCESS Success

SC_ERROR Errors

SC_ERR_RUNNING Error during measurement

SC_ERR_SYNC_SUB Multi-unit synchronization sub unit connection error
Details:

Set the measurement mode. This APl is valid only when stopped.

ScSetMeasuringModeEx

Description:

Set the measurement mode for multi-unit synchronization
Syntax:

[C++]

ScResult ScSetMeasuringModeEx(HandleList* List, int num, int mode)

[C#]

int ScSetMeasuringModeEx(HandleList[] List, int num, int mode)
Parameters:

[IN] List Instrument handle list

[IN] num Number of instrument handle lists

[IN] mode Measuring Mode

SC_FREERUN Free run
SC_TRIGGER Synchronous trigger mode

SC_TRIGGER_ASYNC Asynchronous trigger mode
Return value:

SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_RUNNING Error during measurement

Details:
Set the measurement mode. This APl is valid only when stopped.

4-14 IM D165-01EN

4.2 Data Acquisition Function API

ScStart
Description:
Start waveform acquisition
Syntax:
[C++]
ScResult ScStart(ScHandle hndl);
[C#]
int ScStart(int hndl);
Parameters:
[IN] hndl Instrument handle
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_SYNC_SUB Multi-unit synchronization sub unit connection error
Details:
Starts waveform acquisition. (Sends a Start command.)
ScStartEx
Description:
Start waveform acquisition on instruments connected in multi-unit synchronization
Syntax:
[C++]
ScResult ScStartEx(HandleList* List, int num);
[C#]
int ScStartEx(HandleList[] List, int num);
Parameters:
[IN] List Instrument handle list
[IN] num Number of instrument handle lists
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:
Starts waveform acquisition. (Sends a Start command.)
ScStop
Description:
Stop waveform acquisition
Syntax:
[C++]
ScResult ScStop(ScHandle hndl);
[C#]
int ScStop(int hndl);
Parameters:
[IN] hndl Instrument handle
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_SYNC_SUB Multi-unit synchronization sub unit connection error
Details:
Stops waveform acquisition. (Sends a Stop command.)
IM D165-01EN 4-15

4.2 Data Acquisition Function API

ScStopEx
Description:
Stop waveform acquisition on instruments connected in multi-unit synchronization
Syntax:
[C++]
ScResult ScStopEx(HandleList* List, int num);
[C#]
int ScStopEx(HandleList[] List, int num);
Parameters:
[IN] List Instrument handle list
[IN] num Number of instrument handle lists
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:
Stops waveform acquisition. (Sends a Stop command.)
ScLatchData
Description:
Latch the waveform data
Syntax:
[C++]
ScResult ScLatchData(ScHandle hndl);
[C#]
int ScLatchData(int hndl);
Parameters:
[IN] hndlI Instrument handle
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:

Marks the present acquisition position of the waveform data in the instrument.

In free run mode, this position is used as a reference for getting waveform data.

In trigger mode, history information (acquisition information) is also marked.

4-16

IM D165-01EN

4.2 Data Acquisition Function API

ScLatchDataEx

Description:

Latch the waveform data of instruments connected in multi-unit synchronization
Syntax:

[C++]

ScResult ScLatchDataEx(HandleList* List, int num);

[C#]

int ScLatchDataEx(HandleList[] List, int num);
Parameters:

[IN] List Instrument handle list

[IN] num Number of instrument handle lists
Return value:

SC_SUCCESS Success

SC_ERROR Errors

Details:
Marks the present acquisition position of the waveform data in the instrument.
In free run mode, this position is used as a reference for getting waveform data.
In trigger mode, history information (acquisition information) is also marked.

IM D165-01EN 4-17

4.2 Data Acquisition Function API

ScGetLatchRawData
Description:
Get latched waveform data in free run mode
Syntax:
[C++]
ScResult ScGetLatchRawData(ScHandle hndl, char* buff, int buffLen, int* receivelLen,
int* endFlg);
[CH#]
int ScGetLatchRawData<DT>(int hndl, ref DT[] buff, int buffLen, out int receivelLen,
out endFlg);
Parameters:
[IN] hndl Instrument handle
[OUT] buff Save buffer
[IN] buffLen Length of save buffer
[OUT] receivelLen Size of the received binary data (bytes)
[OUT] endFlg Receive end flag
0 Receiving (remaining data available)
1 Receive end
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:
Gets latched waveform data.
When the buffer size specified by buffLen is smaller than the size of the binary data
actually received, endFlg is set to zero.
Note:

The waveform data contains data of all measurement channels and is provided in block
format. For details on the block format, see “ScGetLatchRawData Data Structure” in
section 5.1.

The returned waveform data is an AD value.

To convert to physical values, an appropriate data conversion is necessary according to
the data type obtained with ScGetChannelType. The following formula is used.

Physical value = AD value x Gain + Offset

(Gain can be obtained with ScGetChannelGain and Offset with ScGetChannelOffset)
For the buffer size, see “Required memory size,” and specify a sufficient size.

10G high-speed data

If endFlag is 0, use ScGetBinaryData to receive the rest of the data.

You can use this method when SC_FREERUN mode is specified.

Example [C++]:

char buff[100000];

int size;

int endFlg;

if (ScGetLatchRawData (hndl, buff, sizeof (buff), &size, &endFlg)
== SC _SUCCESS) {

4-18

IM D165-01EN

4.2 Data Acquisition Function API

ScGetChAcqData

Example [C#]:

byte[] buff = new byte[100000];

int size;

int endFlg;

if (api.ScGetLatchRawData<byte> (hndl, ref buff, buff.Length,
out size, out endFlg) == ScSDK.SC SUCCESS)

{

Description:

Get the waveform data position of a specified channel from the data retrieved with
ScGetLatchRawData

Syntax:
[C++]
ScResult ScGetChAcgData(int chNo, int subChNo, char* buff, int length, int* chOffset,
int* chSize, unsigned int* timeSec, unsigned int* timeTick);
[C#]
int ScGetChAcqData<DT>(int chNo, int subChNo, DT[] buff,int length, out int chOffset,
out int chSize, out unsigned int timeSec, out unsigned int timeTick);
Parameters:
[IN] chNo Channel number
[IN] subChNo Sub channel number (specify 0 if there are none)
[IN] buff Buffer containing data in block format
[IN] length Size of the buffer containing data in block format
[OUT] chOffset Offset position (number of bytes) to the head of the channel
data
[OUT] chSize Channel data size (number of bytes)
[OUT] timeSec Time (UnixTime) at the head of the retrieved data
[OUT] timeTike Time (nanoseconds) at the head of the retrieved data
Return value:
SC_SUCCESS Success
SC_ERROR Errors

Details:

Gets the data position of the specified channel from the retrieved waveform data (block
format).

The head time of the retrieved data is also obtained.

Programming tips:

When you use ScGetChAcqgData to retrieve channel data in order to prevent data
overruns when acquiring waveforms at a high sampling rate, we recommend analyzing
the retrieved data using a thread different from ScGetLatchRawData.

Further, when you acquire waveforms using 10G high-speed data streaming, we
recommend not using ScGetChAcgData during waveform acquisition in order to prevent
data overruns but rather using ScGetLatchRawData to only retrieve data and then using
ScGetChAcqData to retrieve channel data after the waveform acquisition is completed.

IM D165-01EN

4-19

4.2 Data Acquisition Function API

Note:

Prepare a buffer large enough to store the channel data. Calculate the necessary buffer
size based on the data size per point using ScGetChannelBits and the interval between
latches.

Since the waveform data is AD values, to convert to physical values, an appropriate data
conversion is necessary according to the data type obtained with ScGetChannelType.
The following formula is used.

Physical value = AD value x Gain + Offset

(Gain can be obtained with ScGetChannelGain and Offset with ScGetChannelOffset)

If the specified channel data is not available, an error will occur.

If there is no relevant channel data between latches, the data size will be 0.

For details on the block format, see “ScGetLatchRawData Data Structure” in section 5.1.
You can use this method when SC_FREERUN mode is specified.

Example [C++]:

char buff[100000];
int size;
if (ScGetLatchRawData (hndl, buff, sizeof (buff), &size)
== SC_SUCCESS) {

int chOffset;

int chSize;

unsigned int timeSec,timeTick;

if (ScGetChAcgbata(l, 0, buff, size, &chOffset, &chSize,
&timeSec, &timeTick) == SC SUCCESS) ({

}

Example [C#]:

byte[] buff = new byte[100000];

int size;
if (api.ScGetLatchRawData<byte> (hndl, buff, buff.Length,
out size) == ScSDK.SC_SUCCESS) {
int chOffset;
int chSize;
unsigned int timeSec;
unsigned int timeTick;
if (api.ScGetChAcgData<byte> (1, 0, buff, size, out chOffset,
out chSize, out timeSec, out timeTick) == ScSDK.SC SUCCESS) {

4-20

IM D165-01EN

4.2 Data Acquisition Function API

ScGetAcqData
Description:
Get latched waveform data in trigger mode
Syntax:
[C++]
ScResult ScGetAcgData(ScHandle hndl, int chNo, int subChNo, char* buff, int buffLen,
int* receivelLen, int* endFlg, unsigned int* timeSec, unsigned int* timeTick);
[C#]
int ScGetAcqgData<DT>(int hndl, int chNo, int subChNo, ref DT[] buff, int buffLen,
out int recievelLen, out int endFlg, out unsigned int timeSec, out unsigned int timeTick);
Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number
[IN] subChNo Sub channel number (specify 0 if there are none)
[OUT] buff Save buffer
[IN] buffLen Length of save buffer
[OUT] receiveLen Length of the acquired data (in bytes)
[OUT] endFlg Receive end flag
0 Receiving (remaining data available)
1 Receive end
[OUT] timeSec Time (UnixTime) at the head of the retrieved data
[OUT] timeTikc Time (nanoseconds) at the head of the retrieved data
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_PARAMETER Parameter error
Details:
Gets latched waveform data.
The head time of the waveform data is also obtained.
For an overview of the operation when acquiring waveforms in trigger mode using this
API, see section 5.1, “Trigger Mode.”
When the buffer size specified by buffLen is smaller than the size of the binary data
actually received, endFlg is set to zero. In this case, use ScGetBinaryData to receive the
rest of the data.
When waveforms are acquired using external sampling, timeSec and timeTick stores
sample count values, not time information. For details, see section 5.1, “Trigger Mode.”
Note:

ScGetAcqDatalength need to be called immediately before calling this method.

The communication specifications limit the maximum number of binary data bytes that
can be sent at once to 999999999 bytes. Therefore, this API needs to be executed
several times depending on the set record length.

Note that the maximum number of binary data bytes sent by the DL950/SL2000 in

a single transmission is 999999872 bytes (499999936 data points worth for voltage
modules and 249999968 data points worth for RMath). (The actual number of bytes
transmitted on the communication line will be greater than 999999872 bytes as
supplementary information (32 bytes worth) will be included.)

The acquired waveform data is an AD value.

To convert to physical values, an appropriate data conversion is necessary according to
the data type obtained with ScGetChannelType.

You can use this method when SC_TRIGGER or SC_TRIGGER_ASYNC mode is
specified.

IM D165-01EN

4-21

4.2 Data Acquisition Function API

Example [C++]:

char buff[100000];

int size,endFlg;

unsigned int timeSec, timeTick;

if (ScGetAcgDbata (hndl, 1, 0, buff, sizeof (buff),
&size, &endFlg, &timeSec, &timeTick) == SC SUCCESS) {

}

Example [C#]:

byte[] buff = new byte[100000];

int size,endFlg;

unsigned int timeSec, timeTick;

if (api.ScGetAcgData<byte>(hndl, 1, 0, ref buff,

buff.Length, out size, out endFlg, out timeSec, out timeTick)
== ScSDK.SC SUCCESS) {

}

ScGetAcqgDatalength
Description:
Get the number of data points of latched waveform data in trigger mode.
Syntax:
[C++]
ScResult ScGetAcgDatalLength(ScHandle hndl, int chNo, int subChNo, __int64* length);
[C#]
int ScGetAcqDatalLength(int hndl, int chNo, int subChNo, out long length);
Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number
[IN] subChNo Sub channel number (specify 0 if there are none)
[OUT] length Number of Data Points
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_MODE Wrong mode error
SC_ERR_PARAMETER Parameter error
Details:
Gets the number of data points of the specified channel for the acquisition count
specified by ScSetAcqCount.
Note:

What you can get with this APl is the number of data points.

Specify the buffer size used by ScGetAcqData in bytes. The following formula is used.
buffer size = channel data’s bit length x number of data points

(The channel data’s bit length can be obtained with ScGetChannelBits and the number of
data points with ScGetAcgDatalength.)

This API needs to be called immediately before ScGetAcqData.

You can use this method when SC_TRIGGER or SC_TRIGGER_ASYNC mode is
specified.

4-22

IM D165-01EN

4.2 Data Acquisition Function API

ScGetFreeRunDatalLength
Description:
Get the number of valid points according to the time base setting in free run mode.

Syntax:
[C++]
ScResult ScGetFreeRunDatalLength(ScHandle hndl, __int64* length);
[C#]
int ScGetFreeRunDatalLength(int hndl, out long length);
Parameters:
[IN] hndl Instrument handle
[OUT] length Number of valid points
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_MODE Wrong mode error
SC_ERR_PARAMETER Parameter error
Details:
Gets the maximum number of retrievable waveform data points in free run with
ScSaveFreeRunWDF.
Note:
You can use this method when SC_FREERUN mode is specified.
ScGetLatchAcqCount
Description:
Get the maximum latched acquisition count in trigger mode
Syntax:
[C++]
ScResult ScGetLatchAcqCount(ScHandle hndl, __int64* count);
[C#]
int ScGetLatchAcqCount(int hndl, out long count);
Parameters:
[IN] hndl Instrument handle
[OUT] count Maximum acquisition count at the latch point
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:
Gets the maximum acquisition count at the latch point.
The obtained value is used by ScSetAcqCount.
Note:

You can use this method when SC_TRIGGER or SC_TRIGGER_ASYNC mode is
specified.

IM D165-01EN 4-23

4.2 Data Acquisition Function API

ScGetAcqCount
Description:
Get the acquisition count to be accessed in trigger mode
Syntax:
[C++]
ScResult ScGetAcqCount(ScHandle hndl, __int64* count);
[C#]
int ScGetAcqCount(int hndl, out long count);
Parameters:
[IN] hndl Instrument handle
[OUT] count Acquisition count to be accessed
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:
Gets the acquisition count to be accessed by ScGetAcgData, ScAcqDatalLength, and
ScGetTriggerTime.
Note:
You can use this method when SC_TRIGGER or SC_TRIGGER_ASYNC mode is
specified.
ScSetAcqCount
Description:
Set the acquisition count to be accessed in trigger mode
Syntax:
[C++]
ScResult ScSetAcqCount(ScHandle hndl, __int64 count);
[C#]
int ScSetAcqCount(int hndl, long count);
Parameters:
[IN] hndl Instrument handle
[IN] count Acquisition count to be accessed
Return value:
SC_SUCCESS Success
SC_ERROR Errors

Details:

Note:

Sets the acquisition count to be accessed by ScGetAcqData, ScAcgDataLength, and
ScGetTriggerTime.

You can use this method when SC_TRIGGER or SC_TRIGGER_ASYNC mode is
specified.

4-24

IM D165-01EN

4.2 Data Acquisition Function API

ScGetTriggerTime

Description:
Get the trigger time

Syntax:
[C++]
ScResult ScGetTriggerTime(ScHandle hndl, char* buff);
[C#]
int ScGetTriggerTime(int hndl, out string buff);

Parameters:
[IN] hndl Instrument handle
[OUT] buff Trigger time string

Return value:
SC_SUCCESS Success
SC_ERROR Errors

Details:
Gets the trigger time of the acquisition count specified by ScSetAcqCount as a string.
The time is returned as a comma separated character string.
Year (2007 or later), month (1 to 12), day (1 to 31), hour (0 to 23), minute (0 to 59),
second (0 to 59), nanosecond (0 to 999999999),

Note:

You can use this method when SC_TRIGGER or SC_TRIGGER_ASYNC mode is
specified.

ScResumeAcquisition
Description:
Resume waveform acquisition in synchronous trigger mode

Syntax:
[C++]
ScResult ScResumeAcquisition(ScHandle hndl);
[C#]
int ScResumeAcquisition(int hndl);
Parameters:
[IN] hndl Instrument handle
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:
Resumes the waveform acquisition on a DL950/SL2000 whose waveform acquisition is
being held in synchronous trigger mode.
Note:

If the DL950/SL2000 is not being held in synchronous trigger mode, nothing will occur.

If the DL950/SL2000 detects a timeout, waveform acquisition will be resumed even when
this command is not received.

You can use this method when SC_TRIGGER mode is specified.

IM D165-01EN 4-25

4.2 Data Acquisition Function API

ScSetTriggerTimeout

Description:
Set the timeout value on the DL950/SL2000 in synchronous trigger mode
Syntax:
[C++]
ScResult ScSetTriggerTimeout(ScHandle hndl, int timeout);
[C#]
int ScSetTriggerTimeout(int hndl, int timeout);
Parameters:
[IN] hndl Instrument handle
[IN] timeout Timeout value (0 to 497664 s, default value: 600 s)
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:
Sets the timeout value (in seconds) for the waveform acquisition resume command from
the PC in the synchronization process with the DL950/SL2000 in synchronous trigger
mode.
If set to zero, the DL950 waits until a waveform acquisition resume command is received
from the PC.
If set to a value between 1 and 497664, the DL950 acquires the next waveform when the
specified time elapses, without waiting for a waveform acquisition resume command from
the PC.
Note that if any of the following procedures is executed before a waveform acquisition
resume command is received from the PC, the timer on the DL950/SL2000 will restart.
ScGetAcqData, ScGetAcqDatalength, ScGetLatchAcqCount, ScGetAcqCount,
ScSetAcqCount, ScGetTriggerTime
Note:
If the DL950 is not being held in synchronous trigger mode, nothing will occur.
You can use this method when SC_TRIGGER mode is specified.
ScGetTriggerTimeout
Description:
Get the timeout value on the DL950/SL2000 in synchronous trigger mode
Syntax:
[C++]
ScResult ScGetTriggerTimeout(ScHandle hndl, int *timeout);
[C#]
int ScSetTriggerTimeout(int hndl, out int timeout);
Parameters:
[IN] hndl Instrument handle
[OUT] timeout Timeout value (0 to 497664)
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:

Gets the timeout value (in seconds) for the waveform acquisition command from the PC
in the synchronization process with the DL950/SL2000 in synchronous trigger mode.

4-26

IM D165-01EN

4.2 Data Acquisition Function API

ScGetMaxHistoryCount
Description:
Get the maximum number of histories in trigger mode
Syntax:
[C++]
ScResult ScGetMaxHistoryCount(ScHandle hndl, int *count);
[C#]
int ScGetMaxHistoryCount(int hndl, out int count);
Parameters:
[IN] hndl Instrument handle
[OUT] count Maximum number of histories
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:
Gets the maximum number of histories that can be stored in the DL950/SL2000 in trigger
mode.
ScSetSamplingRate
Description:
Set the sampling frequency
Syntax:
[C++]
ScResult ScSetSamplingRate(ScHandle hndl, double srate);
[C#]
int ScSetSamplingRate(int hndl, double srate);
Parameters:
[IN] hndl Instrument handle
[IN] srate Sampling frequency (Hz)
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:
Sets the sampling frequency.
Note:

You cannot set this during waveform acquisition.

IM D165-01EN

4-27

4.2 Data Acquisition Function API

ScGetSamplingRate
Description:
Get the sampling frequency
Syntax:
[C++]
ScResult ScGetSamplingRate(ScHandle hndl, double* srate);
[C#]
int ScGetSamplingRate(int hndl, out double srate);
Parameters:
[IN] hndl Instrument handle
[OUT] srate Sampling frequency
Return value:
SC_SUCCESS Success
SC_ERROR Errors

Details:

Gets the sampling frequency.

ScGetChannelSamplingRate

Description:
Get the channel sampling frequency
Syntax:
[C++]
ScResult ScGetChannelSamplingRate(ScHandle hndl, int chNo, int subChNo,
double* srate);
[C#]
int ScGetChannelSamplingRate(int hndlhNo, int chNo, int subChNo, out double srate);
Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number
[IN] subChNo Sub channel number (specify 0 if there are none)
[OUT] srate Sampling frequency
Return value:
SC_SUCCESS Success
SC_ERROR Errors

Details:

SC_ERR_PARAMETER Parameter error

Gets the channel sampling frequency.

4-28

IM D165-01EN

4.2 Data Acquisition Function API

ScGetChannelBits
Description:
Get the channel’s data bit length.
Syntax:
[C++]
ScResult ScGetChannelBits(ScHandle hndl, int chNo, int subChNo, int* bits);
[C#]
int ScGetChannelBits(int hndl, int chNo, int subChNo, out int bits);
Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number
[IN] subChNo Sub channel number (specify 0 if there are none)
[OUT] bits Data bit length (1 to 32)
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_PARAMETER Parameter error
Details:
Gets the bit length of the channel data (valid AD values) to be acquired.
Note:
For CAN modules and the like, the returned value may not necessarily be the same as
the number of bits specified with Bit Cnt.
ScGetChannelGain
Description:
Get the channel gain
Syntax:
[C++]
ScResult ScGetChannelGain(ScHandle hndl, int chNo, int subChNo, double* gain);
[C#]
int ScGetChannelGain(int hndl, int chNo, int subChNo, out double gain);
Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number
[IN] subChNo Sub channel number (specify 0 if there are none)
[OUT] gain Gain
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_PARAMETER Parameter error
Details:

Gets the gain used to convert acquired waveform data into physical values.

IM D165-01EN 4-29

4.2 Data Acquisition Function API

ScGetChannelOffset
Description:
Get the channel’s data offset.
Syntax:
[C++]
ScResult ScGetChannelOffset(ScHandle hndl, int chNo, int subChNo, double* offset);
[C#]
int ScGetChannelOffset(int hndl, int chNo, int subChNo, out double offset);
Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number
[IN] subChNo Sub channel number (specify 0 if there are none)
[OUT] offset Offset
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_PARAMETER Parameter error
Details:
Gets the offset used to convert acquired waveform data into physical values.
ScGetChannelScale
Description:
Get the upper and lower limits of the channel display scale
Syntax:
[C++]
ScResult ScGetChannelScale(ScHandle hndl, int chNo, int subChNo, double* upper,
double* lower);
[C#]
int ScGetChannelScale(int hndl, int chNo, int subChNo, out double upper,
out double lower);
Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number
[IN] subChNo Sub channel number (specify 0O if there are none)
[OUT] upper Upper limit of display scale
[OUT] lower Lower limit of display scale
Return value:
SC_SUCCESS Success
SC_ERROR Errors

SC_ERR_PARAMETER Parameter error

Details:
Gets the upper and lower limits of the display scale set on the DL950/SL2000 screen.

4-30 IM D165-01EN

4.2 Data Acquisition Function API

ScGetChannelType
Description:
Get the channel data type
Syntax:
[C++]
ScResult ScGetChannelType(ScHandle hndl, int chNo, int subChNo, char* type);
[C#]
int ScGetChannelType(int hndl, int chNo, int subChNo, out string type);
Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number
[IN] subChNo Sub channel number (specify 0 if there are none)
[OUT] type Data type
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_PARAMETER Parameter error
Details:
Gets the type of waveform data to be acquired as a string.
* The string is normally in abbreviated form as it conforms to the response specifications
of communication commands.
ANALog Analog format (real value = data * gain + offset)
LOGic Logic format
FLOat Single-precision floating-point format (applies to RMath channels)
TIMe 32-bit UNIX time and 32-bit fractional seconds in nanoseconds
(applies to G5 sub channel number 63 or GPS sub channel number 7)
ScAddEventListener
Description:
Add an event listener
Syntax:
[C++]
ScResult ScAddEventListener(ScHandle hndl, ScEventListener* listener);
Parameters:
[IN] hndl Instrument handle
[IN] listener Pointer to the event listener class
Return value:
SC_SUCCESS Success
SC_ERROR Errors

Details:

A class that inherits the ScEventListener can be added as an event listener class.

The events that you can register are the over run events for free run mode and the
trigger end events for synchronous trigger mode.

Overwriting handleEventScCallListener causes the same method to be called
automatically when an overrun event occurs.

Overwriting handleEventScTrigEnd causes the same method to be called automatically
when a trigger end event occurs.

IM D165-01EN

4-31

4.2 Data Acquisition Function API

Note:

The overrun event is valid when the connection type is not 10GEther.

This cannot be used with the .NET version (C#).

Example (free run mode):

class cMyEvent : public ScEventListener {

public:
virtual void handleEventScCalllListener (ScHandle hndl,
~ int64 reserve);

bi

cMyEvent* ep = new cMyEvent () ;

ScAddEventListener (hndl, ep);

Example (synchronous trigger mode):
class cMyEvent : public ScEventListener {
public:

virtual void handleEventScTrigEnd (ScHandle hndl) ;
}i
cMyEvent* ep = new cMyEvent () ;
ScAddEventListener (hndl, ep);

ScRemoveEventListener

Description:

Delete the event listener
Syntax:

[C++]

ScResult ScRemoveEventListener(ScHandle hndl, ScEventListener* listener);
Parameters:

[IN] hndl Instrument handle

[IN] listener Pointer to the event listener class
Return value:

SC_SUCCESS Success

SC_ERROR Errors
Details:

Deletes a registered event listener.
Note:

An error will occur if you specify an event listener that has not been added.

This cannot be used with the .NET version (C#).

4-32

IM D165-01EN

4.2 Data Acquisition Function API

ScAddCallback
Description:
Add a call back method (C# only)
Syntax:
[C#]
public delegate void ScCallback(int hndl, int type);
int ScAddCallback(int hndl, ScCallback func, int type);
Parameters:
[IN] hndl Instrument handle
[IN] func Callback method
[IN] type Event Type
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:
Adds a callback method that is called when events occur.
The events that you can register are the over run events for free run mode and the
trigger end events for synchronous trigger mode.
The event type will be SC_EVENTTYPE_OVERRUN or SC_EVENTTYPE_
TRIGGEREND.
Note:
The overrun event is valid when the connection type is not 10GEther.
This cannot be used with C++.
Example:
private void overrunCallback (int hndl, int type)
{
}
if (api.ScAddCallback (hndl, overrunCallback,
SC_EVENTTYPE OVERRUN) != ScSDK.SC_SUCCESS)
{
// error
}
ScRemovecCallback
Description:
Delete the call back method (C# only)
Syntax:
[C#]
int ScRemoveCallback(int hndl, ScCallback func);
Parameters:
[IN] hndl Instrument handle
[IN] func Callback method
Return value:
SC_SUCCESS Success
SC_ERROR Errors
Details:
Deletes the call back method.
Note:

This cannot be used with C++.

IM D165-01EN 4-33

4.3 Flash Acquisition Data Access Library API

ScGetFAcqCount
Description:
Get the number of flash acquisition waveform data files stored in the instrument
Syntax:
[C+t]
ScResult ScGetFAcqCount(ScHandle hndl, int* count);
[C#]
int ScGetFAcqCount(int hndl, out int count);
Parameters:
[IN] hndl Instrument handle
[OUT] count Number of flash acquisition waveform data files stored

Return value:

SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_NOTAPPLICABLE Target device error
Details:
Gets the number of flash acquisition waveform data files stored in the instrument.
ScGetFAcgFileName
Description:
Get the name of a flash acquisition waveform data file stored in the instrument
Syntax:
[C++]
ScResult ScGetFAcgFileName(ScHandle hndl, int count, char* name);
[C#]
int ScGetFAcqFileName(int hndl, int count, out string name);
Parameters:
[IN] hndl Instrument handle
[IN] count Flash acquisition number
[OUT] name File name
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_NOTAPPLICABLE Target device error
SC_ERR_NODATA No applicable files
Details:
Gets the name of a flash acquisition waveform data file stored in the instrument. Specify
the flash acquisition number with the count parameter (get the number of stored files with
ScGetFacqCount). The oldest flash acquisition waveform data stored is assigned to 1.
Note:

The flash acquisition number ranges from 1 to the number obtained with
ScGetFacqCount.

4-34 IM D165-01EN

4.3 Flash Acquisition Data Access Library API

ScOpenFAcqData

Description:
Specify the name of the flash acquisition waveform data file to open

Syntax:
[C++]
ScResult ScOpenFAcqData(ScHandle hndl, char* name , int* result);
[C#]
int ScOpenFAcgData(int hndl, string name, out int result);

Parameters:
[IN] hndl Instrument handle
[IN] name File name
[OUT] result Whether opening is possible

Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_USE_ACQMEMORY Waveform data exists in the acquisition memory.
SC_ERR_RUNNING Error during measurement
SC_ERR_NOTAPPLICABLE Target device error

Details:
Opens a flash acquisition waveform data file to transmit to the PC.
When the file opens, zero is stored in result. Otherwise, a non-zero number is stored.
Set the file name to the name obtained with ScGetFAcqFileName.

Note:
Multiple files cannot be opened simultaneously. If you want to get multiple data files,
open, close, and transmit the data one acquisition waveform data file at a time.
The acquisition memory is used as a temporary buffer when flash acquisition waveform
data is transmitted. Therefore, if there is waveform data in the acquisition memory, the
acquisition memory must be cleared before a file can be opened. To clear the acquisition
memory, execute ScClearAcqMemory.

ScCloseFAcqData

Description:
Close the opened waveform data file

Syntax:
[C++]
ScResult ScCloseFAcqData(ScHandle hndl);
[C#]
int ScCloseFAcqgData(int hndl);

Parameters:
[IN] hndl Instrument handle

Return value:
SC_SUCCESS Success
SC_ERROR Errors

Details:

SC_ERR_NOTAPPLICABLE Target device error

Closes the waveform data file opened with ScOpenFAcgData.

IM D165-01EN

4-35

4.3 Flash Acquisition Data Access Library API

ScClearAcqgMemory

Description:

Clear the waveform data in the acquisition memory
Syntax:

[C++]

ScResult ScClearAcgMemory(ScHandle hndl);

[C#]

int ScClearAcqMemory(int hndl);
Parameters:

[IN] hndl Instrument handle
Return value:

SC_SUCCESS Success

SC_ERROR Errors

SC_ERR_NOTAPPLICABLE Target device error
Details:

Clears the waveform data in the acquisition memory.
Note:

Waveform data not stored in a storage device will be lost. Be sure to save the data as

needed before executing this APl command.

ScGetFAcqStartTime

Description:

Get the measurement start time and date of the opened waveform data file
Syntax:

[C++]

ScResult ScGetFAcqStartTime(ScHandle hndl, char* startTime);

[C#]

int ScGetFAcqStartTime(int hndl, out string startTime);
Parameters:

[IN] hndl Instrument handle

[OUT] startTime Measurement start time
Return value:

SC_SUCCESS Success

SC_ERROR Errors

SC_UNOPENED File not specified

Details:

Note:

SC_ERR_NOTAPPLICABLE Target device error

Gets the measurement start time as a character string for the waveform data file opened
with ScOpenFAcqData.

The character string format is shown below. Fractional seconds are in unit of
nanoseconds.

Output format: "2020/10/01 12:34:56:123456789"

This API command applies to the waveform data file opened with ScOpenFAcgData.

4-36

IM D165-01EN

4.3 Flash Acquisition Data Access Library API

ScGetFAcqTimeBase
Description:
Get the time base setting of the opened waveform data file
Syntax:
[C++]
ScResult ScGetFAcqTimeBase(ScHandle hndl, int* timeBase);
[C#]
int ScGetFAcqTimeBase(int hndl, out int timeBase);
Parameters:
[IN] hndl Instrument handle
[OUT] timeBase Time base setting (0: internal, 1: external)
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_UNOPENED File not specified
SC_ERR_NOTAPPLICABLE Target device error
Details:
Gets the time base setting of the waveform data file opened with ScOpenFAcqgData.
Note:
This APl command applies to the waveform data file opened with ScOpenFAcqgData.
ScGetFAcqgComment
Description:
Get the comment for the opened waveform data file
Syntax:
[C++]
ScResult ScGetFAcgqComment(ScHandle hndl, char* comment);
[C#]
int ScGetFAcqComment(int hndl, out string comment);
Parameters:
[IN] hndl Instrument handle
[OUT] comment Comment string
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_UNOPENED File not specified
SC_ERR_NOTAPPLICABLE Target device error
Details:
Gets the comment string for the waveform data file opened with ScOpenFAcgData.
Note:

This APl command applies to the waveform data file opened with ScOpenFAcgData.

IM D165-01EN 4-37

4.3 Flash Acquisition Data Access Library API

ScGetFAcqChannelCount

Description:
Get the total number of channels stored in the opened waveform data file

Syntax:
[C++]
ScResult ScGetFAcgChannelCount(ScHandle hndl, int* count);
[C#]
int ScGetFAcqChannelCount(int hndl, out int count);
Parameters:
[IN] hndl Instrument handle
[OUT] count Total number of channels
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_UNOPENED File not specified
SC_ERR_NOTAPPLICABLE Target device error
Details:
Gets the total number of channels stored in the opened waveform data file. Using the
total number of channels obtained here, you can get the stored channel numbers with
ScGetFAcqChannleNumber.
Note:

This APl command applies to the waveform data file opened with ScOpenFAcgData.

ScGetFAcqChannelNumber

Description:
Get the channel numbers stored in the opened waveform data file

Syntax:
[C++]
ScResult ScGetFAcqgChannelNumber(ScHandle hndl, int index, int* chNo, int* subChNo);
[C#]
int ScGetFAcgChannelNumber(int hndl, int index, out int chNo, out int subChNo);
Parameters:
[IN] hndl Instrument handle
[IN] index Index number
[OUT] chNo Channel number
[OUT] subChNo Sub Channel Number
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_UNOPENED File not specified

SC_ERR_NOTAPPLICABLE Target device error

4-38 IM D165-01EN

4.3 Flash Acquisition Data Access Library API

Details:
Gets the channel numbers stored in the waveform data file. The channel numbers are
obtained based on the specified index number. Set the index number based on the total
number of channels obtained with ScGetFAcqChannelCount.
The channel numbers range from 1 to 32.
The channel numbers for RMath channels range from 17 to 32.
The channel number for the GPS channel is 17.
The channel number and sub channel number obtained here are used with the APIs for
getting data and channel information.

Note:
The index number ranges from 1 to the number obtained with ScGetFacqChannelCount.
The sub channel number is 1 for modules without sub channel numbers.
This APl command applies to the waveform data file opened with ScOpenFAcgData.

ScGetFAcqChannelBits

Description:
Get the specified channel’s number of bits per data point

Syntax:
[C++]
ScResult ScGetFAcgChannelBits(ScHandle hndl, int chNo, int subChNo, int* bits);
[C#]
int ScGetFAcqChannelBits(int hndl, int chNo, int subChNo, out int bits);
Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number (1 to 32)
[IN] subChNo Sub channel number (1 to 64; specify 0 if there are
none)
[OUT] bits Number of data bits (1 to 32)
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_UNOPENED File not specified
SC_ERR_NOTAPPLICABLE Target device error
SC_ERR_PARAMETER Parameter error
Details:
Gets the specified channel’s number of bits per data point (AD value).
Note:

The number of bits here is different from the module’s resolution. For example, the
number of bits is 16 for channels of voltage modules and other analog modules and 32
for RMath channels. It is also 16 for logic modules (720230).

This APl command applies to the waveform data file opened with ScOpenFAcqgData.

IM D165-01EN 4-39

4.3 Flash Acquisition Data Access Library API

ScGetFAcqChannelGain

Description:
Get the specified channel’s gain
Syntax:
[C++]
ScResult ScGetFAcqChannelGain(ScHandle hndl, int chNo, int subChNo, double* gain);
[C#]
int ScGetFAcqChannelGain(int hndl, int chNo, int subChNo, out double gain);
Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number (1 to 32)
[IN] subChNo Sub channel number (1 to 64; specify O if there are none)
[OUT] gain Sampling interval value
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_UNOPENED File not specified
SC_ERR_NOTAPPLICABLE Target device error
SC_ERR_PARAMETER Parameter error
Details:
Gets the specified channel’s gain. The physical value of an obtained channel’s data can
be calculated from the gain and offset using the following formula.
Physical value = Data x Gain + Offset
Note:

The linear scale setting is applied to the gain and offset.

Conversion to physical values is necessary when the data type (ScGetFAcqChannelType)
is ANALog.

This APl command applies to the waveform data file opened with ScOpenFAcgData.

ScGetFAcqChannelHOffset

Description:

Gets the specified channel’s offset time (seconds) from the measurement start time
Syntax:

[C+t]

ScResult ScGetFAcqChannelHoffset(ScHandle hndl, int chNo, int subChNo, double*

hOffset);

[C#]

int ScGetFAcqChannelHOffset(int hndl, int chNo, int subChNo, out double hOffset);
Parameters:

[IN] hndl Instrument handle

[IN] chNo Channel number (1 to 32)

[IN] subChNo Sub channel number (1 to 64; specify 0 if there are none)

[OUT] hOffset Offset from the measurement start time (seconds)
Return value:

SC_SUCCESS Success

SC_ERROR Errors

SC_UNOPENED File not specified

SC_ERR_NOTAPPLICABLE Target device error

SC_ERR_PARAMETER Parameter error

4-40

IM D165-01EN

4.3 Flash Acquisition Data Access Library API

Details:

Note:

The first data value when waveform acquisition was started and the offset time (phase
difference) from the measurement start time can be obtained for the specified channel.
The meaning of the value is as follows depending on the time base setting.

Internal sampling: Offset time from the measurement start time (seconds)

External sampling: Phase difference sample count from the measurement start point

In the case of internal sampling, when the reference sample rate (determined by the
record length and T/Div settings) displayed in the upper right of the DL950/SL2000
screen differs from the channel’s sample rate, a phase difference may occur between
the reference sample and channel sample. In such cases, the phase difference between
the data point at the start of data acquisition and the measurement start time, which
represents the reference sample, for the channel is obtained as an offset time. When the
channel’s sample rate is the same as the reference, the value is zero.

In the case of external sampling, on modules with sub channels, external data samples,
which are used as the reference, are acquired at a sample interval according to the
number of sub channels. In such cases, the offset indicates the phase difference sample
count between the data point at the start of channel’s acquisition and the data point at
the start of external sample acquisition.

This APl command applies to the waveform data file opened with ScOpenFAcqData.

ScGetFAcqChannelHResolution

Description:
Gets the specified channel’'s sampling interval
Syntax:
[C++]
ScResult ScGetFAcgChannelHResolution(ScHandle hndl, int chNo, int subChNo,
double* hResolution);
[C#]
int ScGetFAcqChannelHResolution(int hndl, int chNo, int subChNo,
out double hResolution);
Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number (1 to 32)
[IN] subChNo Sub channel number (1 to 64; specify O if there are none)
[OUT] hResolution Sampling interval value
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_UNOPENED File not specified
SC_ERR_NOTAPPLICABLE Target device error
SC_ERR_PARAMETER Parameter error
Details:
Gets the specified channel’'s sampling interval. The meaning of the value is as follows
depending on the time base setting.
Internal sampling: Channel sampling interval (1/sampling rate) (unit: seconds)
External sampling: 1 / PulseRotate
Note:

This APl command applies to the waveform data file opened with ScOpenFAcgData.

IM D165-01EN

4-41

4.3 Flash Acquisition Data Access Library API

ScGetFAcqChannelLabel

Description:
Get the specified channel’s label name
Syntax:
[C++]
ScResult ScGetFAcgChannelLabel(ScHandle hndl, int chNo, int subChNo, char* label);
[C#]
int ScGetFAcqChannelLabel(int hndl, int chNo, int subChNo, out string label);
Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number (1 to 32)
[IN] subChNo Sub channel number (1 to 64; specify 0 if there are none)
[OUT] label Channel label
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_UNOPENED File not specified
SC_ERR_NOTAPPLICABLE Target device error
SC_ERR_PARAMETER Parameter error
Details:
Gets the specified channel’s label name.
Note:

This APl command applies to the waveform data file opened with ScOpenFAcgData.

ScGetFAcqChannelLogicBits

Description:
Get the specified channel’s effective number of logic bits
Syntax:
[C++]
ScResult ScGetFAcgChannelLogicBits(ScHandle hndl, int chNo, int subChNo, int* bits);
[C#]
int ScGetFAcqChannelLogicBits(int hndl, int chNo, int subChNo, out int bits);
Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number (1 to 32)
[IN] subChNo Sub channel number (1 to 64; specify 0 if there are none)
[OUT] bits Effective number of logic bits
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_UNOPENED File not specified
SC_ERR_NOTAPPLICABLE Target device error
SC_ERR_PARAMETER Parameter error
Details:
Gets the specified channel’s effective number of logic bits. The number is 8 when the
module is 720230. On CAN modules, it is the specified number of bits.
Note:

This APl command applies to the waveform data file opened with ScOpenFAcgData.

4-42

IM D165-01EN

4.3 Flash Acquisition Data Access Library API

ScGetFAcqChannelLogiclLabel

Description:
Get the specified channel’s logic bit label name
Syntax:
[C++]
ScResult ScGetFAcgChannelLogicLabel(ScHandle hndl, int chNo, int subChNo,
int bitNo, char* label);
[C#]
int ScGetFAcqChannelLogicLabel(int hndl, int chNo, int subChNo, int bitNo,
out string label);
Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number (1 to 32)
[IN] subChNo Sub channel number (1 to 64; specify 0 if there are none)
[IN] bitNo Bit number (1 to 8)
[OUT] label Bit label
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_UNOPENED File not specified
SC_ERR_NOTAPPLICABLE Target device error
SC_ERR_PARAMETER Parameter error
Details:
Gets the specified channel’s logic bit label name.
Note:

This APl command applies to the waveform data file opened with ScOpenFAcqgData.

ScGetFAcqChannelOffset

Description:
Get the specified channel’s offset value
Syntax:
[C++]
ScResult ScGetFAcqChannelOffset(ScHandle hndl, int chNo, int subChNo,
double* offset);
[C#]
int ScGetFAcqChannelOffset(int hndl, int chNo, int subChNo, out double offset);
Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number (1 to 32)
[IN] subChNo Sub channel number (1 to 64; specify O if there are none)
[OUT] offset Offset
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_UNOPENED File not specified
SC_ERR_NOTAPPLICABLE Target device error
SC_ERR_PARAMETER Parameter error

IM D165-01EN

4-43

4.3 Flash Acquisition Data Access Library API

Details:

Note:

Gets the specified channel’s offset. The physical value of an obtained data can be
calculated from the gain and offset using the following formula.
Physical value = Data * Gain + Offset

The linear scale setting is applied to the gain and offset.

Conversion to physical values is necessary when the data type (ScGetFAcqChannelType)
is ANALog.

This APl command applies to the waveform data file opened with ScOpenFAcgData.

ScGetFAcqChannelSign

Description:
Get the specified channel’s data sign
Syntax:
[C++]
ScResult ScGetFAcqChannelSign(ScHandle hndl, int chNo, int subChNo, int* sign);
[C#]
int ScGetFAcqChannelSign(int hndl, int chNo, int subChNo, out int sign);
Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number (1 to 32)
[IN] subChNo Sub channel number (1 to 64; specify O if there are none)
[OUT] sign Sign (0: without a sign, 1: with a sign)
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_UNOPENED File not specified
SC_ERR_NOTAPPLICABLE Target device error
SC_ERR_PARAMETER Parameter error
Details:
Gets the specified channel’s data sign. Normal voltage modules and other analog
modules are with a sign. CAN modules and other modules that have a setting for the sign
are with or without a sign depending on that setting.
Note:

This APl command applies to the waveform data file opened with ScOpenFAcgData.

4-44

IM D165-01EN

4.3 Flash Acquisition Data Access Library API

ScGetFAcqChannelType
Description:
Get the specified channel’s data type
Syntax:
[C++]
ScResult ScGetFAcgChannelType(ScHandle hndl, int chNo, int subChNo, char* type);
[C#]
int ScGetFAcqChannelType(int hndl, int chNo, int subChNo, out string type);
Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number (1 to 32)
[IN] subChNo Sub channel number (1 to 64; specify 0 if there are none)
[OUT] type Data type
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_UNOPENED File not specified
SC_ERR_NOTAPPLICABLE Target device error
SC_ERR_PARAMETER Parameter error
Details:
Gets the specified channel’s data type as a string.
* The string is normally in abbreviated form as it conforms to the response specifications
of communication commands.
ANALog Analog format (real value = data * gain + offset)
LOGic Logic format
FLOat Single-precision floating-point format (applies to RMath channels)
TIMe 32-bit UNIX time and 32-bit fractional seconds in nanoseconds
(applies to G5 sub channel number 63 or GPS sub channel number 7)
Note:
This APl command applies to the waveform data file opened with ScOpenFAcqData.
ScGetFAcqChannelUnit
Description:
Get the specified channel’s unit string
Syntax:
[C++]
ScResult ScGetFAcgChannelUnit(ScHandle hndl, int chNo, int subChNo, char* unit);
[CH#]
int ScGetFAcqChannelUnit(int hndl, int chNo, int subChNo, out string unit);
Parameters:
[IN] hndl Instrument handle
[IN] chNo Channel number (1 to 32)
[IN] subChNo Sub channel number (1 to 64; specify 0 if there are none)
[OUT] unit Unit string
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_UNOPENED File not specified
SC_ERR_NOTAPPLICABLE Target device error
SC_ERR_PARAMETER Parameter error

IM D165-01EN

4-45

4.3 Flash Acquisition Data Access Library API

Details:

Note:

Gets the specified channel’s unit string.

This APl command applies to the waveform data file opened with ScOpenFAcgData.

ScSetFAcqChannelNumber

Description:
Set the channel number you want to acquire the waveform data of

Syntax:

[C++]

ScResult ScSetFAcqgChannelNumber(ScHandle hndl, int chNo, int subChNo);

[C#]

int ScSetFAcqChannelNumber(int hndl, int chNo, int subChNo);
Parameters:

[IN] hndl
[IN] chNo
[IN] subChNo

Return value:

Details:

Note:

SC_SUCCESS
SC_ERROR
SC_UNOPENED
SC_ERR_NOTAPPLICABLE
SC_ERR_PARAMETER

Instrument handle
Channel number (1 to 32)
Sub channel number (1 to 64; specify O if there are none)

Success

Errors

File not specified
Target device error
Parameter error

Sets the channel number you want to acquire the waveform data of. This APl command
applies to the ScGetFAcqDataLength and ScGetFAcqData APl commands.

This APl command applies to the waveform data file opened with ScOpenFAcgData.

ScGetFAcqDatalength

Description:
Get the specified channel’s number of data points

Syntax:

[C++]

ScResult ScGetFAcgDataLength(ScHandle hndl, __int64* length);

[C#]

int ScGetFAcqDatalength(int hndl, out long length);
Parameters:

[IN] hndl
[OUT] length

Return value:

Details:

Note:

SC_SUCCESS

SC_ERROR
SC_UNOPENED
SC_ERR_NOTAPPLICABLE

Instrument handle
Number of Data Points

Success

Errors

File not specified
Target device error

Gets the number of data points for the channel specified with ScSetFacqChannelNumber.

This APl command applies to the waveform data file opened with ScOpenFAcgData.

4-46

IM D165-01EN

4.3 Flash Acquisition Data Access Library API

ScGetFAcgData
Description:
Get the specified channel’'s data
Syntax:
[C++]
ScResult ScGetFAcgData(ScHandle hndl, char® buff, int buffLen, int* dataLen);
[C#]
int ScGetFAcqData(int hndl, ref DT[] buff, int buffLen, out int dataLen);
Parameters:
[IN] hndl Instrument handle
[OUT] buff Save buffer
[IN] buffLen Length of save buffer (unit: bytes)
[OUT] dataLen Length of saved data (unit: bytes)
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_UNOPENED File not specified
SC_ERR_NOTAPPLICABLE Target device error
Details:
Gets the data for the channel specified with ScSetFacqChannelNumber. The buffer size
necessary for one transmission is according to the ScSetFAcqDataSize. If the waveform
data of the channel to be transmitted is larger than the buffer size, this command can be
repeated consecutively to obtain the entire waveform data.
Programming tips:
You can calculate the number of loops to execute using this command from the number
of data points and the number of bits or you can loop until dataLen becomes zero.
Note:

The value obtained with ScGetFAcgDatalength is the number of data points. The
value used by this command is a byte-converted buffer size. To calculate the size

from the number of data points, use the number of bits per point that you can get with
ScGetFacqChannelBits.

If you execute this command after all the waveform data of the target channel has been
acquired, the datalLen value becomes zero.

If you execute ScSetFacqChannelNumber in the middle of acquiring the waveform
data of the target channel, the state will reset, and the data after the change will be
transmitted from the beginning.

This APl command applies to the waveform data file opened with ScOpenFAcqData.

IM D165-01EN

4-47

4.3 Flash Acquisition Data Access Library API

ScSetFAcqDataSize
Description:
Set the maximum buffer size that can be transmitted at one time.
Syntax:
[C++]
ScResult ScSetFAcqgDataSize(ScHandle hndl, int size);
[C#]
int ScSetFAcqDataSize(int hndl, int size);
Parameters:
[IN] hndl Instrument handle
[IN] size Size

SC_SIZE_16MB/ SC_SIZE_32MB / SC_SIZE_64MB /
SC_SIZE_128MB / SC_SIZE_256MB /
SC_SIZE_512MB

Return value:

SC_SUCCESS Success
SC_ERROR Errors
SC_UNOPENED File not specified
SC_ERR_PARAMETER Size specification error
SC_ERR_NOTAPPLICABLE Target device error
Details:
Sets the buffer size that can be transmitted from the DL950/SL2000 when
ScGetFAcqgData is executed once.
The available settings are 16, 32, 64, 128, 256, and 512 MiB. The default is 16 MiB.
Note:

This is the buffer size, not the number of data points.
This API command applies to the waveform data file opened with ScOpenFAcgData.

4-48 IM D165-01EN

4.4 File Operation and Transfer API

ScSetCurrentDrive
Description:
Set the current drive

Syntax:
[C++]
ScResult ScSetCurrentDrive(ScHandle hndl, int drive);
[C#]
int ScSetCurrentDrive(int hndl, int drive);
Parameters:
[IN] hndl Instrument handle
[IN] drive Current drive

SC_DRIVE_IDRIVE
SC_DRIVE_NETWORK
SC_DRIVE_SD
SC_DRIVE_USB_0
SC_DRIVE_USB_1
SC_DRIVE_FLASH

Return value:

SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_PARAMETER Current drive specification error

Details:
Sets the current drive to the specified drive.

ScGetCurrentDrive
Description:
Get the set current drive

Syntax:
[C++]
ScResult ScGetCurrentDrive(ScHandle hndl, int* drive);
[C#]
int ScGetCurrentDrive(int hndl, out int drive);
Parameters:
[IN] hndl Instrument handle
[OUT] drive Current drive

SC_DRIVE_IDRIVE
SC_DRIVE_NETWORK
SC_DRIVE_SD
SC_DRIVE_USB 0
SC_DRIVE_USB 1
SC_DRIVE_FLASH
Return value:
SC_SUCCESS Success
SC_ERROR Errors

IDRive
NETWork
SD
USB-0
USB-1
FLASh

IDRive
NETWork
SD
USB-0
USB-1
FLASh

IM D165-01EN

4-49

4.4 File Operation and Transfer API

Details:
Gets the set current drive.

ScSetCurrentDirectory

Description:
Sets the current directory.

Syntax:
[C++]

ScResult ScSetCurrentDirectory(ScHandle hndl, char* pathName);

[C#]

int ScSetCurrentDirectory(int hndl, DT[] buff, string pathName);

Parameters:
[IN] hndl
[OUT] pathName

Return value:
SC_SUCCESS
SC_ERROR
SC_ERR_PARAMETER
Details:
Changes the current directory.

ScGetCurrentDirectory

Description:
Gets the current directory.

Syntax:
[C++]

Instrument handle

Path name

(Example)

"labcdefg/efghi” — Absolute path designation
"iklmn" — Relative path designation
" — To parent directory

" — To root directory

Success

Errors

Path name empty string error

ScResult ScGetCurrentDirectory(ScHandle hndl, char* pathName);

(C#]

int ScGetCurrentDirectory(int hndl, out string pathName);

Parameters:
[IN] hndl
[OUT] pathName

Return value:
SC_SUCCESS
SC_ERROR

Details:
Gets the current directory.

Instrument handle
Path name
(Example)
"/abcdefg/efghi”

Success
Errors

4-50

IM D165-01EN

4.4 File Operation and Transfer API

ScGetFileNum
Description:

Get the number of files

Syntax:
[C++]

ScResult ScGetFileNum(ScHandle hndl, int* number);

(C#]

int ScGetFileNum(int hndl, out int number);

Parameters:
[IN] hndl
[OUT] number

Return value:

Instrument handle
Number of files

Success
Errors

Gets the number of files stored in the current directory.

To get file information with ScGetFilelnfo, execute this API function at the target current

ScResult ScGetFilelnfo(ScHandle hndl, int index, FileInfo* info);

int ScGetFilelnfo(int hndl, int index, out Filelnfo info);

Instrument handle
File number
File information

Success
Errors

Gets the information of the file with the index number in the current directory.

SC_SUCCESS

SC_ERROR
Details:
Note:

directory in advance.

ScGetFilelnfo

Description:

Get file information
Syntax:

[C++]

[C#]
Parameters:

[IN] hndl

[IN] index

[OUT] info
Return value:

SC_SUCCESS

SC_ERROR
Details:
Note:

Get the number of files with ScGetFileNum before getting file information.

IM D165-01EN

4-51

4.4 File Operation and Transfer API

ScDeleteFile
Description:
Delete files
Syntax:
[C++]
ScResult ScDeleteFile(ScHandle hndl, char* name);
[C#]
int ScDeleteFile(int hndl, string name);
Parameters:
[IN] hndl Instrument handle
[IN] name File name
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_PARAMETER File name empty string error
Details:
Deletes the file with the specified name from the current directory.
ScDownloadFile
Description:
Get afile
Syntax:
[C++]
ScResult ScDownloadFile(ScHandle hndl, char* srcFileName, char* dstFileName);
[C#]
int ScDownloadFile(int hndl, string srcFileName, string dstFileName);
Parameters:

[IN] hndl
[IN] srcFileName

[IN] dstFileName

Return value:
SC_SUCCESS
SC_ERROR
SC_ERR_PARAMETER

Details:

Instrument handle

Copy source file name

(Example)

"stuvw.xyz"

Copy destination file name (PC side)
(Example)

"C:\ScSDK\stuvw.xyz"

Success
Errors
File name empty string error

Gets the file specified by srcFileName in the current directory.

4-52

IM D165-01EN

4.4 File Operation and Transfer API

ScUploadFile
Description:
Send a file
Syntax:
[C++]
ScResult ScUploadFile(ScHandle hndl, char* srcFileName, char* dstFileName);
[C#]
int ScUploadFile(int hndl, string srcFileName, string dstFileName);
Parameters:
[IN] hndl Instrument handle
[IN] srcFileName Copy source file name (PC side)
(Example)
"C:\ScSDK\stuvw.xyz"
[IN] dstFileName Copy destination file name (unit side)
(Example)
"stuvw.xyz"
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_PARAMETER File name empty string error
Details:
Saves the file specified by srcFileName in the current directory.
Note:
An error will occur if the file size is zero.
ScSaveTriggerWDF
Description:
Save a trigger waveform file
Syntax:
[C++]
ScResult ScSaveTriggerWDF(ScHandle hndl, char * dstFileName);
[CH#]
int ScSaveTriggerWDF(int hndl, string dstFileName);
Parameters:

[IN] hndl
[IN] dstFileName

Return value:

Details:

SC_SUCCESS
SC_ERROR
SC_ERR_MODE
SC_ERR_PARAMETER
SC_ERR_RUNNING

Saves the displayed trigger waveform data as a WDF file in the PC.

Instrument handle

Copy destination file name (PC side)
(Example)

"C:\ScSDK\stuvw.WDF"

Success

Errors

Wrong mode error

File name empty string error
Error during measurement

IM D165-01EN

4-53

4.4 File Operation and Transfer API

Note:
An error will occur if a waveform is not displayed on the DL950/SL2000.
To save real-time recording data, adjust the TMCTL timeout period with ScTmcSetTimeout.
File save settings depend on the instrument settings.
ScSaveFreeRunWDF
Description:
Save a free run waveform file
Syntax:
[C++]
ScResult ScSaveFreeRunWDF(ScHandle hndl, INT64 startPos, INT64 count,
char *srcFileName);
[C#]
int ScSaveFreeRunWDF(int hndl, Int64 startPos, Int64 count, string srcFileName);
Parameters:
[IN] hndl Instrument handle
[IN] startPos Save start position
[IN] count Number of points to save (maximum value is the value
obtained by ScGetFreeRunDatalLength)
[IN] srcFileName Copy destination file name (PC side)
(Example)
"C:\ScSDK\stuvw.WDF"
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_MODE Wrong mode error

SC_ERR_PARAMETER File name empty string error
SC_ERR_RUNNING Error during measurement

Details:
Saves the displayed free run waveform data as a WDF file in the PC.
Note:
You can get the number of valid points to be saved with ScGetFreeRunDatalLength.
ScSaveSetup
Description:
Get a setup file
Syntax:
[C++]
ScResult ScSaveSetup(ScHandle hndl, char *fileName);
[C#]

int ScSaveSetup(int hndl, string fileName);

4-54 IM D165-01EN

4.4 File Operation and Transfer API

Parameters:
[IN] hndl Instrument handle
[IN] fileName Name of the setup file to be saved (PC side)
(Example)
"C:\ScSDK\stuvw.SET"
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_PARAMETER File name empty string error
Details:
Saves the DL950/SL2000 settings in a setup file on the PC side.
ScLoadSetup
Description:
Set a setup file
Syntax:
[C++]
ScResult ScLoadSetup(ScHandle hndl, char *fileName);
[C#]
int ScLoadSetup(int hndl, string fileName);
Parameters:
[IN] hndl Instrument handle
[IN] fileName Setup file name (PC side)
(Example)
"C:\ScSDK\stuvw.SET"
Return value:
SC_SUCCESS Success
SC_ERROR Errors
SC_ERR_PARAMETER File name empty string error
Details:
The settings in the setup file specified by fileName are reflected in the DL950/SL2000.
Note:
An error will occur if the file size is zero.
ScGetFileList
Description:
Get a list of file names
Syntax:

[C++4]

ScResult ScGetFileList(ScHandle hndl , char** fileList, int max, int extension, int sort,
int* fileCount);

[C#]

int ScGetFileList(int hndl, out string[] fileList, int max, int extension, int sort,

out int fileCount);

IM D165-01EN 4-55

4.4 File Operation and Transfer API

Parameters:
[IN] hndl
[OUT] fileList
[IN] max
[IN] extension

[IN] sort

[OUT] fileCount

Return value:
SC_SUCCESS
SC_ERROR
SC_ERR_PARAMETER

Details:

Gets a list of file names with the specified extension in the current directory.
Specify the maximum size of the array for the max parameter.

Instrument handle
List of file names

Maximum size of file name list

File name extension
SC_FILE_ETE_ALL

SC _FILE_ETE_SET
SC_FILE_ETE_WDF
SC_FILE_ETE_BMP
SC_FILE_ETE_PNG
SC_FILE_ETE_JPG
SC_FILE_ETE_SNP
SC_FILE_ETE_SBL

SC _FILE_ETE_CSV
SC_FILE_ETE_MAT
Sort Order
SC_SORT_NAME_ASC
SC_SORT_NAME_DESC
SC_SORT_DATE_ASC
SC_SORT_DATE_DESC
SC_SORT_SIZE_ASC
SC_SORT_SIZE_DESC

Success
Errors

*SET
*WDF
*BMP
*PNG
*JPG
*.SNP
*.SBL
*.CSV
* MAT

Ascending order by name

Descending order by name
Ascending order by update date
Descending order by update date
Ascending order by file size
Descending order by file size
Number of files saved in the list

Maximum file name list size error,

File name extension specification error

4-56

IM D165-01EN

4.4 File Operation and Transfer API

ScGetFilelnfoList

Description:
Gets a list of file information

Syntax:
[C++]
ScResult ScGetFilelnfoList(ScHandle hndl, Filelnfo* infoList, int max, int extension,
int sort, int* fileCount);
[C#]
int ScGetFileInfoList(int hndl, out Filelnfo[] infoList, int max, int extension,
int sort, out int fileCount);

Parameters:
[IN] hndl Instrument handle
[OUT] fileList List of file information
[IN] max Maximum size of file information list
[IN] extension File name extension

SC_FILE_ETE_ALL
SC_FILE_ETE_SET
SC_FILE_ETE_WDF
SC_FILE_ETE_BMP
SC_FILE_ETE_PNG
SC_FILE_ETE_JPG
SC_FILE_ETE_SNP
SC_FILE_ETE_SBL
SC_FILE_ETE_CSV
SC_FILE_ETE_MAT

[IN] sort Sort Order
SC_SORT_NAME_ASC
SC_SORT_NAME_DESC
SC_SORT_DATE_ASC
SC_SORT_DATE_DESC
SC_SORT_SIZE_ASC
SC_SORT_SIZE_DESC

*SET
*WDF
*BMP
*PNG
*JPG
*SNP
*.SBL
*.CSV
* MAT

Ascending order by name
Descending order by name

Ascending order by update date
Descending order by update date

Ascending order by file size
Descending order by file size

[OUT] fileCount Number of files saved in the list
Return value:

SC_SUCCESS Success

SC_ERROR Errors

SC_ERR_PARAMETER Maximum file name list size error,

File name extension specification error

Details:

Gets a list of file information with the specified extension in the current directory.
Specify the maximum size of the array for the max parameter.

IM D165-01EN

4-57

4.5 DLL Linking Method

For C++, only implicit linking is currently assumed for DLL linking.
To use the API through implicit linking, specify and link to the import library (.lib file), and
call the API in the same manner as calling normal functions.

In addition, place the following DLLs in the same folder as the application (exe) that you

create.
Projects C++ Ci#
(unmanaged application) (managed application)
Architecture 32bit 64bit 32bit 64bit Any CPU

ScSDK.dlII Y Y Y
ScSDK 64.dlI Y Y Y
ScSDK Net.dll Y Y Y
tmctl.dll Y Y Y
tmctl64.dll Y Y Y

4-58 IM D165-01EN

Chapter 5 Appendix

5.1 Data Acquisition Function

Free Run Mode
Free run mode using this APl and DL950/SL2000 works as follows.

The DL950/SL2000 starts acquiring waveforms when it receives a waveform acquisition
start (ScStart) command. It continues to acquire waveforms until it receives a waveform
acquisition stop (ScStop) command. Waveform data is temporarily stored in the
instrument’s acquisition memory.

While the waveform acquisition is in progress, execute latches (ScLatchData) and
waveform acquisitions (ScGetLatchRawData) through the API. Waveform data between
latches can be retrieved.

In a single latch, the waveform data of all channels is sent from the DL950/SL2000 to the
API. Therefore, you need to be careful about the buffer size used by the API.

@ P Time axis dire

ScStart ScLatchData(1) ScLatchData(2) ScLatchData(3)

< > Latch(1) range
< > Latch(2) range
< > Latch(3) range

ScGetLatchRawData(1) ScGetLatchRawData(2) ScGetLatchRawData(3)

IM D165-01EN 5-1

5.1 Data Acquisition Function

Sampling Rate, Wire Type, and Connection Mode
The available sampling rates for waveform acquisition vary depending on the type of
connection used between the DL950/SL2000 and the API.

10G high-speed transmission
Set the write type to HiSLIP (SC_WIRE_HISLIP) when establishing a connection. In this
case, the DL950/SL2000 can acquire waveforms using up to 10 MS/s x 16 channels.

Other types
If the connection is not 10G HiSLIP, the DL950/SL2000 can acquire waveforms using up
to 200 kS/s x 16 channels.

If the sampling rate for acquiring waveforms is fast and the interval between data
retrievals is long, waveform data in the DL950/SL2000 memory may be overwritten.

Required memory size

When data is retrieved in free run mode, the data of all waveform acquisition channels

is received in the data format described in “ScGetLatchRawData Data Structure.” The
required memory size must be calculated using the following parameters and set with the
ScGetLatchRawData command.

* Number of channels in use

» Sampling rate

* Latch interval

For example, if waveforms are acquired in free run mode at 200 kS/s on 16 channels
(voltage module), 6400000 bytes (= 400000 bytes x 16 channels) of space are required
every second.

Furthermore, 32 bytes of data are required for storing header information for each
channel acquiring waveforms.

Thus, a total of 6400512 bytes (= 6400000 bytes + 32 bytes x 16 channels) of space is
required every second.

5-2

IM D165-01EN

5.1 Data Acquisition Function

ScGetLatchRawData Data Structure

In free run mode, the data received from the DL950/SL2000 contains the data of all
channels acquiring waveforms.

The data format is shown below. The data of each channel is concatenated in the
following format. All data is in Little Endian format.

1 Channel number (4 bytes) 0to 31 Framed area (1)
2 Sub channel number (4 bytes) 0to63™" ™2 Framed area (2)
3 Reserved (8 bytes)
4 Time of the first data value (8 bytes) Unix Time (4Byte) + Framed area (3)
Tick (4 bytes, in nanoseconds (0 to 999999999))*
5 Data size (8 bytes) 0+ Framed area (4)
The data size is equal to the number of ACQ data
points converted into number of bytes. 3
6 ACQ data You can verify the data size of an ACQ point using Framed area (5)
ScGetChannelBits. °
(2)
ADDRESS 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
00000000 (1){ 00 00 00 00/[00 00 00 00|00 00 00 00 00 00 00 00
00000010 (3)[E4 14 CC 61 OA 68 FA OB|[EO 2F 00 00 00 00 00 00 |(4)
00000020 90 04 90 04 A0 04 90 04 08 04 80 04 90 04 /O 04
00000030 70 04 70 04 70 04 70 04 50 04 60 04 50 04 50 04
00000040 50 04 40 04 40 04 30 04 30 04 30 04 20 04 20 04
00000050 | 10 04 10 04 10 04 10 04 00 04 FO 03 00 04 FO 03

(%)

Both channel numbers and sub channel numbers start at zero. (Waveform acquisition
channel CH1 is ‘0’ and RMath1 is “16’.)

For 720240, 720241, 720242, and 720243, the number is not the sub channel number but
the number of valid sub channels.

For example, if sub channels 1 and 3 are enabled and sub channel 2 is disabled, sub
channel 1 is ‘0’ and sub channel 3 is ‘1"

For normal modules, a single data point is 2 bytes. If 17 bits or more bytes are set on CAN,
for example, a single data point is 4 bytes. For RMath channels, a single data point is 4
bytes because the data is in floating point format. For sub channels of power math and
harmonic math functions, a single data point is 4 bytes because the data is in floating point
format. For GPS sub channels, a single data point is 4 bytes because the data is in 32-bit
integer format.

For time information channels of power math, harmonic math, and GPS functions, a single
data point is 8 bytes.

When a measurement is performed in external sampling mode, the value of this area is
undefined.

Notes for multiple sample rates and low sample rates

If waveforms are acquired at multiple sample rates or low sample rate in free run mode,
the data size is adjusted so that the number of data points retrieved during waveform
acquisition is fixed to a given number (integral multiple of 16). If the number becomes

zero as a result of adjustment, data of the current latch is included in the data retrieved in
the next latch.

IM D165-01EN

5.1 Data Acquisition Function

Data in timestamp format

If power analysis, harmonic analysis, or GPS position information is enabled on the
analysis menu, the data for these channels will be stored in timestamp format. Data in
timestamp format is always stored in pairs consisting of the computed result of each item
and the time information of the computation. All data is in Little Endian format.

Power analysis Harmonic analysis GPS position
information
Channel RMath13 RMath14 RMath15 RMath16 RMath1
ltem’s sub channel 1 to 62 1to 62 1to06
32-bit floating-point type 32-bit floating-point type 32-bit integer
type
Time information sub channel 63 63 7

64-bit time format (see below)

Time information sub channels are recorded in the following format.

4-byte data Unix Time (with 1970/1/1 as 0) Framed area (1)
4-byte data Tick (4 bytes, in nanoseconds (0 to 999999999)) Framed area (2)

ADDRESS 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OF OF
00000000 EA 78 CC 61 28 97 A7 25 EA 78 CC 61 28 C4 D8 26
00000010 EA 78 CC 61 38 18 OA 28 EA 78 CC 61 38 45 3B 29
00000020 | EA 78 CC 6ﬂ|28 EB 6C 2A|EA 18 CC 61 38 9F 9D 2B

(1 (2)

If the waveforms are acquired using external sampling, the sample count, not the time
information, is saved.

Sample count (64-bit counter with the first data value set to 0)
8-byte data 4-byte data Sample count (upper 4 bytes) Framed area (1)
4-byte data Sample count (lower 4 bytes) Framed area (2)

ADDRESS 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OF OF
00000000 00 00 00 00 14 00 00 00 00 00 00 00 15 00 00 00
00000010 00 00 00 00 A4 01 00 00 00 00 00 00 A5 01 00 00
00000020 | 00 00 00 OQ|60 02 00 OO|OO 00 00 00 6D 02 00 00

(1) (2)

The sample count is not a simple 64-bit integer value but a value divided into upper and
lower bytes. Each value is in Little Endian format.

*

Trigger Mode

Trigger mode using this APl and DL950/SL2000 works as follows.

The DL950/SL2000 acquires waveforms using triggers from when it receives a waveform
acquisition start (ScStart) command until it receives a waveform acquisition stop (ScStop)
command. Waveform data is stored in the instrument’s acquisition memory. (The number
of history entries that can be stored varies depending on the settings.)

While the waveform acquisition is in progress, execute latches (ScLatchData) and
waveform acquisitions (ScGetAcqDatalLength and ScGetAcgData) through the API.
There are two trigger modes: synchronous and asynchronous.

IM D165-01EN

5.1 Data Acquisition Function

Synchronous mode

In synchronous mode, the DL950/SL2000 acquires the next waveform after waiting for

a response from the PC for the previous waveform acquisition. Use synchronous mode
when you want to ensure that waveform data is transferred to the PC after waveform
acquisition.

There are two ways to determine the completion of a waveform acquisition on the DL950/
SL2000. The first way is to implement the application to wait for trigger end events
(ScAddEventListener(c++), ScAddCallBack(c#)). The second is to monitor the acquisition
count (ScGetLatchAcqCount) periodically with a program and decide that a waveform
acquisition has been completed when the value is updated.

* Execute SclLatchData first and then ScGetLatchAcqCount.

The following figure shows the waveform acquisition sequence using triggers with trigger
end events.

Synchronous trigger mode sequence

ScStart

ScLatchData(1)

ScResumeAcquisition(1)

ScLatchData(2)

TR

P Time axis

direction

ScResumeAcquisition(2)

TrigEndEvent(1) TrigEndEvent(2)
DL950/ Waveform acquisition ScGetLatchRawData(1) Waveform acquisition ScGetLatchRawData(2)
SL2000 | using triggers 1st time ScGetAcqData(1) using triggers 2nd time ScGetAcqData(2)
IM D165-01EN 5-5

5.1 Data Acquisition Function

Asynchronous mode

In asynchronous mode, the DL950/SL2000 continues waveform acquisition regardless of
the command control on the PC.

The PC monitors the acquisition count by periodically executing ScLatchData and
ScGetLatchAcgCount. When it verifies that the acquisition count has been updated,

the acquisition count sent to the PC is set using ScSetAcqCount and waveform data is
transferred.

Asynchronous mode is mainly used when you want to reduce the interval (dead time)
between waveform acquisitions using triggers.

In asynchronous mode, the DL950/SL2000 repeatedly acquires waveforms regardless of
the waveform acquisition from the PC. If the measurement time (T/Div) is short, data may
be overwritten due to waveform acquisition on the DL950/SL2000 when waveforms are
acquired on the PC by specifying an old acquisition count.

(This depends greatly on the number of history entries on the DL950/SL2000. For details
on the number of histories, see the appendix in the DL950 ScopeCorder/SL2000 High-
Speed Data Acquisition Unit User’s Manual (IM DL950-02EN). In this case, waveform
data cannot be acquired even when a waveform acquisition (ScGetAcqData) command
is executed on the PC. The number of valid data points will be zero.

The following figure shows the waveform acquisition sequence in asynchronous mode.

Asynchronous trigger mode sequence

@ P Time axis
direction
PC ScStart ScLatchData ScLatchData ScLatchData
ScGetLatchAcqCount =0 ScGetLatchAcqCount =3
ScGetLatchAcqCount =1
Waveform acquisition Waveform acquisition Waveform acquisition
using triggers 1st time using triggers 2nd time using triggers 3rd time
ScSetAcqCount =1 ScSetAcqCount=2o0r3
ScGetAcqDataLength(1) ScGetAcqDataLength(2)
ScGetAcqData(1) ScGetAcqData(2)

IM D165-01EN

5.1 Data Acquisition Function

Waveform acquisition using external samples

When waveforms are acquired in trigger mode using external samples, timeSec and
timeTick that are obtained using ScGetAcgData will contain sample counts, not time
data, in the following format. (The handling is different from the timestamp format. For
details on the timestamp format, see the explanation for free run mode.)

Sample count (64-bit counter of the first data value set to 0 after starting
waveform acquisition)

4-byte data (timeSec) Sample count (lower 4 bytes)
4-byte data (timeTick) Sample count (upper 4 bytes)

* The sample count is not a simple 64-bit integer value but a value divided into upper
and lower bytes. Each value is in Little Endian format.

» The sample count is zero for the first data after waveform acquisition is started. In
trigger mode, the first data obtained by this APl may not necessarily be zero. (The
sample count is continuously incremented until the first acquisition is completed
after a trigger occurs. Therefore, the sample count at the data start point is obtained
by subtracting the record length from the sample count at the point acquisition is
completed.)

8-byte data

Further, because values are output for each calculation period for channels in timestamp
format, the sample count included in the sub channel of time information in timestamp
format may differ in range from the range obtained by ScGetAcgData for normal
channels.

For details on the calculation period in timestamp format (power analysis), see the
appendix in the DL950 ScopeCorder/SL2000 High-Speed Data Acquisition Unit Features
Guide, IM DL950-01EN.

IM D165-01EN

5.2 Flash acquisition data access library

Care must be taken in handling a portion of the waveform data acquired by the DL950/
SL2000. Analyze the data by referring to the following description.

Data in timestamp format

If power analysis, harmonic analysis, or GPS position information is enabled on the
analysis menu, the data for these channels will be stored in timestamp format. Data in
timestamp format is always stored in pairs consisting of the computed result of each item
and the time information of the computation. All data is in Little Endian format.

For details on the calculation period in timestamp format (power analysis), see the
appendix in the DL950 ScopeCorder/SL2000 High-Speed Data Acquisition Unit Features
Guide, IMDL950-01EN.

Power analysis Harmonic analysis GPS position
information
Channel RMath13 RMath14 RMath15 RMath16 RMath1
Item’s sub channel 110 62 110 62 1t06
32-bit floating-point type 32-bit floating-point type 32-bit integer
type
Time information sub channel 63 63 7

64-bit time format (see below)

Time information sub channels are recorded in the following format.

4-byte data Unix Time (with 1970/1/1 as 0) Framed area (1)
4-byte data Tick (4 bytes, in nanoseconds (0 to 999999999)) Framed area (2)

ADDRESS 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OF OF
00000000 EA 78 CC 61 28 97 A7 25 EA 78 CC 61 28 C4 D8 26
00000010 EA 78 CC 61 38 18 OA 28 EA 78 CC 61 38 45 3B 29
00000020 | EA 78 CC 61|28 EB 6C 2A EA 78 CC 61 38 9F 9D 2B

(1 (2)

If the waveforms are acquired using external sampling, the sample count, not the time
information, is saved.

Sample count (64-bit counter with the first data value set to 0)
8-byte data 4-byte data Sample count (upper 4 bytes) Framed area (1)
4-byte data Sample count (lower 4 bytes) Framed area (2)

ADDRESS 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OF OF
00000000 00 00 00 00 14 00 00 00 00 00 00 00 15 00 00 00
00000010 00 00 00 00 A4 01 00 00 00 00 00 00 A5 01 00 00
00000020 [00 00 00 0Qj|6C 02 00 00 00 00 00 00 6D 02 00 00

(1 (2)

The sample count is not a simple 64-bit integer value but a value divided into upper and
lower bytes. Each value is in Little Endian format.

*

IM D165-01EN

5.3 How to Use Communication Commands

Communication commands are sent and received using the following communication
command control functions.

APl Name Function Page
ScSetControl Send a communication command 4-7
ScGetControl Receive a response to a communication command 4-8
ScGetBinaryData Receive binary data 4-9
ScQueryMessage Send a communication command and receive its response 4-10

For details on communication command control functions, see “Common API.” For
details on commands, see the DL950 ScopeCorder/SL2000 High-Speed Data Acquisition
Unit Communication Interface User’s Manual, IM DL950-17EN.

IM D165-01EN 59

5.4 Migration to ScopeCorder SDK

You can smoothly migrate from DL950ACQAPI or DL950FACQAPI to ScopeCorder SDK
by changing programs as follows.

C++
Remove the referenced API, add “ScSDK.lib” or “ScSDK64.lib” to the library and change
the header file to “ScSDK.h.”

C#
Remove the referenced API, add “ScSDKNet” to the include statement and change the
using statement to “using ScSDK = ScSDKNet.ScSDK.”

VB

Remove the referenced API, add “ScSDKNet” to the include statement and change the
Imports statement to “Imports ScSDK = ScCSDKNet.ScSDK.”

IM D165-01EN

5.5 Comparison with the SL1000 Control API

(SxAPI)

The following is a list of ScopeCorder SDK functions that have the same functionality as the SL1000 control

API functions.

Function Description SL1000 Control API ScopeCorder SDK

Initialization SxInit Sclnit

Close SxExit ScExit

Send a command SxSetControl ScSetControl

Send or get a command SxGetControl ScGetControl
ScQueryMessage

Send or get a command SxGetControlBinary ScGetBinaryData

Create event handler, enable SxCreateEvent ScAddEventListener

notification ScAddCallback

Delete event handler SxDeleteEvent ScRemoveEventListener
ScRemoveCallback

Set the measuring mode SxSetAcqMode ScSetMeasuringMode

Set the sampling frequency

SxSetSamplingRate

ScSetSamplingRate

Get the sampling frequency

SxGetSamplingRate

ScGetSamplingRate

ScGetChannelSamplingRate

Start measurement SxAcqgStart ScStart
ScStartEx
Stop measurement SxAcqgStop ScStop
ScStopEx
Execute latch SxAcgLatch SclLatchData
SclLatchDataEx
Generate manual trigger SxExecManualTrig ScResumeAcquisition
Get acquisition data information SxGetChannellnfo ScGetChannelGain
ScGetChannelOffset
Get the number of sample points in the SxGetLatchLength ScGetAcqDatalength
latch interval
Get the latest acquisition number SxGetlLatestAcqNo ScGetlLatchAcqCount
Get waveform data SxGetAcqData ScGetlLatchRawData
ScGetChAcgData
Get data acquisition time SxGetAcqTime ScGetTriggerTime
Save setup information SxSaveSetup ScSaveSetup
Load setup information SxLoadSetup SclLoadSetup
Set the current drive SxFileSetCurrentDrive ScSetCurrentDrive
Get the current drive SxFileGetCurrentDrive ScGetCurrentDrive
Set the current directory SxFileChDir ScSetCurrentDirectory
Get the current directory SxFileCwDir ScGetCurrentDirectory

Get the number of files

SxFileGetFileNum

ScGetFileNum

Get file information

SxFileGetFilelnfo

ScGetFilelnfo

Delete files SxFileDelete ScDeleteFile
Get a file SxFileGet ScDownloadFile
Create a file SxFilePut ScUploadFile
IM D165-01EN 5-11

5.6

Sample Programs

This software includes the following sample programs.

Folder name Description

file File operation and transfer

flashacquition Flash acquisition data access

freerun MultiUnit Data acquisition free run for multi-unit synchronization
SingleUnit Data acquisition free run

reopen Reconnect instruments and set measurement modes

trigger MultiUnit Data acquisition trigger for multi-unit synchronization
SingleUnit Data acquisition trigger

Each sample program is available in C++, C#, and VBNet.

Folder name Description
ScSDKNetSample Sample program (C#)
ScSDKSample Sample program (C++)
ScSDKVBNetSample Sample program (VBNet)

Use the APIs described in this manual by referring to these sample programs according
to your environment.

5-12

IM D165-01EN

5.6 Sample Programs

Reconnect instruments and set measurement modes (reopen)

Initial screen
B ScsDK — O
(Wre Tvee: it N e Connection
destination
Reapen success: ScReopeninstrument() .
*idn = YOKOGAWS DLAGO, settln s
success: SclstStatusfol) g
Change Made Rurining: Runhing
Connecting: OFF
TimeBaze: Internal
AcqMods: Frasrun
DualCapture: OFF H
GOMoga: OFF -— Log WIndow
Storage Optior: ST2
success: ScStopl)
success: ScSetDatafcqModel) Freerun mode
success: ScCloselhstrument
Exit

Buttons

Connection destination settings
* Wire Type combo box

Select the wire type from USBTMC, VXI11, and HiSLIP.
* Address text box

Enter the address of the device to be connected.

Buttons
* Reopen button
Connects to the device under measurement that matches the selected Wire Type and
the entered address. Also acquires status information and stops the measurement if it
is in progress.
API to use: Sclnit, ScReopeninstrument, ScGetStatusinfo, ScStop
» Change Mode button
Changes the connected device to free run mode.
API to use: ScSetMeasuringMode
+ Close button
Closes the connection.
API to use: ScCloselnstrument
» Exit button
Closes the application.
API to use: ScExit

Log window
Shows connection status and data details.

How to Use

1. Specify the wire type in the Wire Type combo box and the connection destination in
the Address text box.

2. Click Reopen to start a connection. The status information of the connected device is
obtained, and measurement is stopped if it is in progress.

3. Click Change Mode to change the measurement mode to free run mode.

. Click Close to close the connection.

5. Click Exit to close the application.

N

IM D165-01EN 5-13

5.6 Sample Programs

Data acquisition free run (freerun SingleUnit)

Initial screen
Wire Type: MAIN ~ Address: } Connection
= detst’fmatlon
settings
Start g
Latch \\ / ’\‘\\ /\.\ /.'/\ / -\\ //' \.\ /
Stop \ / \ \ /'i \\ ; \ 1'/ \ ,f/
Close] N/ \\J" NS \J \J/ /
Waveform window
success: ScOpenlnstrument()
*idn = YOKOGAWA DLIED,
ScGetSamplingRate() 100000
S et
SelatchData(-—=--—----= B
2\22_33.320525/?;;01 14:5542.266700010 Log WIndOW
success: ScCloselhstrument()
Exit
Buttons

Connection destination settings
* Wire Type combo box

Select the wire type from USBTMC, VXI11, and HiSLIP.
* Address text box

Enter the address of the device to be connected.

Buttons
* Open button
Connects to the device that matches the selected Wire Type and the entered address.
API to use: Sclnit, ScOpeninstrument, ScGetSamplingRate
+ Start button
Starts a measurement.
API to use: ScStart
» Latch button
Performs a latch.
API to use: ScLatchData, ScGetLatchRawData, ScGetChAcqData,
ScGetChannelGain, ScGetChannelOffset, ScGetChannelBits, ScGetChannelType,
ScGetChannelScale
» Stop button
Stops the measurement.
API to use: ScStop
* Close button
Closes the connection.
API to use: ScCloselnstrument
» Exit button
Closes the application.
API to use: ScExit

IM D165-01EN

5.6 Sample Programs

Waveform window

Acquires data and displays a waveform. By default, data is acquired only for CH1 and
displays its waveform.

Log window

Shows connection status and data details.

How to Use

1.

w

(]

Specify the wire type in the Wire Type combo box and the connection destination in
the Address text box.

. Click Open to start a connection.
. Click start to start a measurement.
. Click Latch to acquire data in the latch period. The acquired data is displayed in the

waveform window.

. Click Stop to stop the measurement. To resume measurement, click Start.
. Click Close to close the connection. To reconnect, click Open.
. Click Exit to close the application.

IM D165-01EN

5.6 Sample Programs

Data acquisition free run for multi-unit synchronization (freerun MultiUnit)

Initial screen
gl
Wire Type: I ~ Search Address addres= sync=0FF, name=DLUG0, unit= - l_ Connection
destination
Open
settings
Start
Latch
Stap
Glose
Waveform window
[swnc: MAIN] CH1_0: 2025/04/01 14:52:29.830430010
[swnc: SUE] SclafchDatal)------------
[swnc: SUBT GH1_0: 2025/04/01 14:52:20 830430010
[swnc: MAIN] SclatchDatalj-——————————
[swnc: MAIN] GH1_0: 2025/04/0 62
Bone, U] T b siassnrnt Temaan 5670010 ;
Eales 0z
S SeStapEn - Log window
success: ScCloselhstrumentEx()
Exit
Buttons

Connection destination settings
* Wire Type combo box
Select the wire type from USBTMC, VXI11, and HiSLIP.
» Search button
Obtains a list of instruments that can be connected with the selected wire type.
API to use: Sclnit, ScSearchDevices
* Address combo box
Shows a list of instruments that can be connected.

Buttons
» Open button
Connects to the device that matches the selected Wire Type and the entered address.
API to use: ScOpenlinstrumentEx, ScGetSamplingRate
» Start button
Starts a measurement.
API to use: ScStartEx
* Latch button
Performs a latch.
API to use: ScLatchDataEx, ScGetLatchRawData, ScGetChAcqData,
ScGetChannelGain, ScGetChannelOffset, ScGetChannelBits, ScGetChannelType,
ScGetChannelScale
» Stop button
Stops the measurement.
API to use: ScStopEx
* Close button
Closes the connection.
API to use: ScCloselnstrumentEx

IM D165-01EN

5.6 Sample Programs

» Exit button
Closes the application.
API to use: ScExit

Waveform window
Acquires data and displays a waveform. By default, data is acquired only for CH1 and
displays its waveform.

Log window
Shows connection status and data details.

How to Use

. Select the wire type in the Wire Type combo box.

. Click Search to obtain instruments that can be connected.

. Select the connection destination in the Address combo box.

. Click Open to start a connection.

. Click start to start a measurement.

. Click Latch to acquire data in the latch period. The acquired data is displayed in the
waveform window.

. Click Stop to stop the measurement. To restart measurement, click Start.

. Click Close to close the connection. To reconnect, click Open.

9. Click Exit to close the application.

oD O WN =

©

IM D165-01EN

5.6 Sample Programs

Data acquisition trigger (trigger SingleUnit)

Initial screen
gl
Wire Typs: W11] Addess Mads © Syrehvonous wiggsr O Asynctronous tigeer | Connection
destination

Open

— settings

Stap

Glose |

Waveform window

success: ScResumedcquisition()
success: ScStopl
LatchAcgCount = 4
SclatchData(j-—————————
current acquisition no = 0
Ea(?LEF\”ﬂB:] o L h = 20002, ti 20250401 15:14:456346 10450
cGetAcqDatal)ireceive Length = time = | H
Fietan s b) — Log window
success: ScCloselhstrument()

Exit

Buttons

Connection destination settings
* Wire Type combo box
Select the wire type from USBTMC, VXI11, and HiSLIP.
» Address text box
Enter the address of the device to be connected.
* Mode radio button
Select synchronous mode or asynchronous mode.

Buttons

» Open button
Connects to the device that matches the selected Wire Type and the entered address.
API to use: Sclnit, ScOpenlinstrument, ScAddCallback (C#, VBNet),
ScAddEventListener (C++), ScGetSamplingRate, ScSetTriggerTimeout,
ScGetTriggerTimeout

« Start button
Starts a measurement.
API to use: ScStart

» Stop button
Stops the measurement.
API to use: ScStop

» Close button
Closes the connection.
API to use: ScCloselnstrument, ScRemoveCallback (C#, VBNet),
ScRemoveEventListener (C++)

» Exit button
Closes the application.
API to use: ScExit

IM D165-01EN

5.6 Sample Programs

Waveform window
When a trigger event is received from DL950/SL2000, waveform data is acquired, and
the waveform is displayed. By default, data is acquired only for CH1 and displays its
waveform.

API to use: ScLatchData, ScGetLatchAcgCount, ScSetAcqCount, ScGetAcqCount,
ScGetAcgData, ScGetAcqDatalLength, ScGetChannelGain, ScGetChannelOffset,
ScGetChannelBits, ScGetChannelType, ScGetChannelScale, ScResumeAcquisition

Log window
Shows connection status and data details.

How to Use

1. Specify the wire type in the Wire Type combo box and the connection destination in
the Address text box.

2. Select synchronous or asynchronous mode with the Mode radio button.

. Click Open to start a connection.

4. Click start to start a measurement. After starting, when a trigger event occurs in
synchronous mode, the waveform is latched in 100 milliseconds in asynchronous
mode, and the waveform is displayed on the waveform window.

5. Click Stop to stop the measurement. To restart measurement, click Start.

. Click Close to close the connection. To reconnect, click Open.

7. Click Exit to close the application.

w

o]

IM D165-01EN

5-19

5.6 Sample Programs

Data acquisition trigger for multi-unit synchronization (trigger MultiUnit)

Initial screen
Wire Type: V11 v Search Connection
Address: | addres= sync=OFF. name=DLSBE, unit= v Mode: O Synchronous trigeer O Asmehronous tieger destination
— settings

Start
Stop

Glose

Exit

I
Button

Waveform window

[sync: MAIN] Dataleneth = 10001
[sync: MAIN] ScGetfegDatal)ireceive Length = 20002, time = 2026/04/01 15:126160350450
[sync: SUE] LatchficqCount = &

[syne: SUB] current acquisition no = 0 i
[evne: SUE] SeLatchDatal}-=-=-------- _ Log window
[syne: S8] Dataleneth = 10001

[sync: SUIE] ScGetAcqDatal): receive Leneth = 20002, time = 2026/04/01 15:1 251 50350450

sucoess SostopEx)

sucoess SeCloselnstrumentEx)

S

Connection destination settings
* Wire Type combo box
Select the wire type from USBTMC, VXI11, and HiSLIP.
» Search button
Obtains a list of instruments that can be connected with the selected wire type.
API to use: Sclnit, ScSearchDevices
* Address combo box
Shows a list of instruments that can be connected
* Mode radio button
Select synchronous mode or asynchronous mode.

Buttons
* Open button
Connects to the selected device.
API to use: ScOpeninstrumentEx, ScAddCallback (for C#, VBNet),
ScAddEventListener (for C++), ScGetSamplingRate, ScSetTriggerTimeout,
ScGetTriggerTimeout
+ Start button
Starts a measurement.
API to use: ScStartEx
» Stop button
Stops the measurement.
API to use: ScStopEx

5-20

IM D165-01EN

5.6 Sample Programs

Close button

Closes the connection.

API to use: ScCloselnstrumentEx, ScRemoveCallback (for C#, VBNet),
ScRemoveEventListener (for C++)

Exit button

Closes the application.

API to use: ScExit

Waveform window

When a trigger event is received from DL950/SL2000, waveform data is acquired, and
the waveform is displayed. By default, data is acquired only for CH1 and displays its
waveform.

API to use: ScLatchDataEx, ScLatchData, ScGetLatchAcqCount, ScSetAcqCount,
ScGetAcqCount, ScGetAcgData, ScGetAcqDatalLength, ScGetChannelGain,
ScGetChannelOffset, ScGetChannelBits, ScGetChannelType, ScGetChannelScale,
ScResumeAcquisition

Log window

Shows connection status and data details.

How to Use

DO WN =

© N

. Select the wire type in the Wire Type combo box.

. Click Search to obtain instruments that can be connected.

. Specify the connection destination in the Address combo box.

. Select synchronous or asynchronous mode with the Mode radio button.

. Click Open to start a connection.

. Click start to start a measurement. After starting, when a trigger event occurs in

synchronous mode, the waveform is latched in 100 milliseconds in asynchronous
mode, and the waveform is displayed on the waveform window.

. Click Stop to stop the measurement. To restart measurement, click Start.
. Click Close to close the connection. To reconnect, click Open.
. Click Exit to close the application.

IM D165-01EN

5-21

5.6 Sample Programs

Flash acquisition data access (flashacquition)

Initial screen
BEl ScsDK - o
T —) Connect!on destination settings
war z o= |__ Connection open and close buttons
File List
Channel List:
_ Log window
Exit
Buttons

Connection destination settings

Wire Type combo box

Select the wire type from USBTMC, VXI11, and HiSLIP.
Address text box

Enter the address of the device to be connected.

Connection open and close buttons

Open button

Connects to the device that matches the selected Wire Type and the entered address.
API to use: Sclnit, ScOpenlinstrument, ScGetFAcqCount, ScGetFAcqFileName

Close button

Closes the connection.

API to use: ScCloselnstrument

Buttons

File List combo box

After the connection is started, the acquisition file name is saved in the combo box.
FileOpen button

Opens the acquisition file selected in the File List combo box and saves the channel
list in the Channel List combo box.

API to use: ScOpenFAcqData, ScGetFAcqChannelCount, ScGetFAcqChannelNumber,
ScSetFAcqDataSize, ScSet10GMode, ScGet10GMode

Channel List combo box

Saves the channel list of the acquisition file.

Get button

Saves the channel data selected in the Channel List combo box as a CSV file.

API to use: ScSetFAcgChannelNumber, ScGetFAcqChannelBits,
ScGetFAcgDataLength, ScGetFAcqComment, ScGetFAcqChannellLabel,
ScGetFAcgChannelUnit, ScGetFAcqChannelHResolution, ScGetFAcqChannelHoffset,
ScGetFAcqgTimeBase, ScGetFAcqStartTime, ScGetFAcqChannelGain,
ScGetFAcgChannelOffset, ScGetFAcqData

FileClose button

Closes the acquisition file.

API to use: ScCloseFAcqData

Exit button

Closes the application.

API to use: ScExit

5-22

IM D165-01EN

5.6 Sample Programs

Log window

Shows connection status and data details.

How to Use

1.

]

Specify the wire type in the Wire Type combo box and the connection destination in
the Address text box.

. Click Open to start a connection. A list of acquisition files of the connection destination

is shown in the File List combo box.

. Select an acquisition file in the File List combo box, and press FileOpen. A list of

channels of the acquisition file is shown in the Channel List combo box.

. Select a channel in the Channel List combo box, and press the Get to acquire the

channel data.

. Click FileClose to close the acquisition file.
. Click Close to close the connection. To reconnect, click Open.
. Click Exit to close the application.

IM D165-01EN

5-23

5.6 Sample Programs

File operation and transfer

Initial screen
BE ScSDK File - m]
Wire Type: Il o Connection
destination
__O £l .
: settings
Get File List
Download File
Upload File
Save WDF File LOg window
Save Setup File
Load Setup File
Close
Exit
Buttons

Connection destination settings

Wire Type combo box

Select the wire type from USBTMC, VXI11, and HiSLIP.
Address text box

Enter the address of the device to be connected.

Buttons

Open button

Connects to the device that matches the selected Wire Type and the entered address.

API to use: Sclnit, ScOpenlnstrument
Get File List button

Gets a list of files in the current directory and displays them in the combo box.

API to use: ScGetFileList

Download File button

Gets the file selected in the combo box.

API to use: ScDownloadFile

Upload File button

Saves the file you just retrieved to the device.
API to use: ScUploadFile

Save WDF File button

Gets the waveform displayed in the window as a WDF file.
API to use: ScSaveTriggerWWDF

Save Setup File button

Gets the device settings as a SET file.

API to use: ScSaveSetup

Load Setup File button

Applies the settings in the SET file you just obtained to the device settings.

API to use: ScLoadSetup
Close button

Closes the connection.

API to use: ScCloselnstrument
Exit button

Closes the application.

API to use: ScExit

5-24

IM D165-01EN

5.6 Sample Programs

Log window

Shows connection status and data details.

How to Use

1.

~N O O b w

(o]

Specify the wire type in the Wire Type combo box and the connection destination in
the Address text box.

. Click Open to start a connection.
. Press Get File List to get a list of files in the current directory. The obtained file list is

shown in the combo box.

. Select a file in the combo box.

. Click Download to get the file selected in the combo box.

. Click Upload File to save the file you just retrieved to the device.

. Click Save WDF File to save the waveform displayed on the device screen as a WDF

file. An error will occur if there is no waveform on the screen.

. Click Save Setup File to get the device settings as a SET file.
. Click Load Setup File to apply the settings in the SET file you just obtained to the

device settings.

10.Click Close to close the connection. To reconnect, click Open.
11.Click Exit to close the application.

IM D165-01EN

5-25

	Notes on Usage
	Contents
	Chapter 1	Software Overview
	1.1	Software Overview

	Chapter 2	API Overview
	2.1	API Overview
	Data Acquisition Function
	Flash acquisition data access library
	File operation and transfer feature

	2.2	Overview of API Functions
	Initialization and termination
	Connection and disconnection
	Getting or setting waveform acquisition conditions
	Getting trigger-based waveform acquisition information
	Get waveform data
	Converting waveform data
	Event listener and callback functions
	Getting flash acquisition waveform data information
	Getting the channel information stored in a waveform data file
	Get waveform data
	Operating and transferring files

	2.3	Basic Flow of Using the API
	Data Acquisition Function
	Unmanaged application (free run mode)
	Managed application (free run mode)
	Unmanaged application (trigger mode)
	Managed application (trigger mode)
	Flash acquisition data access library
	Unmanaged Application
	Managed Application

	Chapter 3	API Functional Specifications
	3.1	Definition of Class
	Class ScEventListener

	3.2	Definition of Constants
	SC_SUCCESS
	SC_ERROR
	SC_UNOPENED
	SC_USE_ACQMEMORY
	SC_ERR_UNOPENED
	SC_ERR_RUNNING
	SC_ERR_SYNC_CONN
	SC_ERR_SYNC_SUB
	SC_ERR_RECORDER
	SC_ERR_MODE
	SC_ERR_NOTAPPLICABLE
	SC_ERR_NODATA
	SC_ERR_PARAMETER
	SC_WIRE_USBTMC
	SC_WIRE_VISAUSB
	SC_WIRE_VXI11
	SC_WIRE_HISLIP
	SC_FREERUN
	SC_TRIGGER
	SC_TRIGGER_ASYNC
	SC_NOMODE
	SC_EVENTTYPE_OVERRUN
	SC_EVENTTYPE_TRIGGEREND
	SC_SIZE_16MB
	SC_SIZE_32MB
	SC_SIZE_64MB
	SC_SIZE_128MB
	SC_SIZE_256MB
	SC_SIZE_512MB
	SC_10GMODE_ON
	SC_10GMODE_OFF
	SC_DRIVE_IDRIVE
	SC_DRIVE_NETWORK
	SC_DRIVE_SD
	SC_DRIVE_USB_0
	SC_DRIVE_USB_1
	SC_DRIVE_FLASH
	SC_FILE_ETE_ALL
	SC_FILE_ETE_SET
	SC_FILE_ETE_WDF
	SC_FILE_ETE_BMP
	SC_FILE_ETE_PNG
	SC_FILE_ETE_JPG
	SC_FILE_ETE_SNP
	SC_FILE_ETE_SBL
	SC_FILE_ETE_CSV
	SC_FILE_ETE_MAT
	SC_SYNC_OFF
	SC_SYNC_CONN
	SC_SYNC_MAIN
	SC_SYNC_SUB
	SC_STAT_STOPPED
	SC_STAT_RUNNING
	SC_STAT_INTERNAL
	SC_STAT_EXTERNAL
	SC_STAT_SSD
	SC_STAT_FACQ
	SC_STAT_TRIGGER
	SC_STAT_FREERUN
	SC_STAT_OFF
	SC_STAT_ON
	SC_STAT_ST1
	SC_STAT_ST2
	SC_SORT_NAME_ASC
	SC_SORT_NAME_DESC
	SC_SORT_DATE_ASC
	SC_SORT_DATE_DESC
	SC_SORT_SIZE_ASC
	SC_SORT_SIZE_DESC

	3.3	Definitions of Data Structures
	HandleList
	DeviceList
	StatusInfo
	FileInfo

	Chapter 4	API Detailed Specifications
	4.1	Common API
	ScInit
	ScExit
	ScOpenInstrument
	ScReopenInstrument
	ScCloseInstrument
	ScOpenInstrumentEx
	ScReopenInstrumentEx
	ScCloseInstrumentEx
	ScSetControl
	ScGetControl
	ScGetBinaryData
	ScQueryMessage
	ScSet10GMode
	ScGet10GMode
	ScSearchDevices
	ScGetStatusInfo
	ScTmcSetTimeout

	4.2	Data Acquisition Function API
	ScSetMeasuringMode
	ScSetMeasuringModeEx
	ScStart
	ScStartEx
	ScStop
	ScStopEx
	ScLatchData
	ScLatchDataEx
	ScGetLatchRawData
	ScGetChAcqData
	ScGetAcqData
	ScGetAcqDataLength
	ScGetFreeRunDataLength
	ScGetLatchAcqCount
	ScGetAcqCount
	ScSetAcqCount
	ScGetTriggerTime
	ScResumeAcquisition
	ScSetTriggerTimeout
	ScGetTriggerTimeout
	ScGetMaxHistoryCount
	ScSetSamplingRate
	ScGetSamplingRate
	ScGetChannelSamplingRate
	ScGetChannelBits
	ScGetChannelGain
	ScGetChannelOffset
	ScGetChannelScale
	ScGetChannelType
	ScAddEventListener
	ScRemoveEventListener
	ScAddCallback
	ScRemoveCallback

	4.3	Flash Acquisition Data Access Library API
	ScGetFAcqCount
	ScGetFAcqFileName
	ScOpenFAcqData
	ScCloseFAcqData
	ScClearAcqMemory
	ScGetFAcqStartTime
	ScGetFAcqTimeBase
	ScGetFAcqComment
	ScGetFAcqChannelCount
	ScGetFAcqChannelNumber
	ScGetFAcqChannelBits
	ScGetFAcqChannelGain
	ScGetFAcqChannelHOffset
	ScGetFAcqChannelHResolution
	ScGetFAcqChannelLabel
	ScGetFAcqChannelLogicBits
	ScGetFAcqChannelLogicLabel
	ScGetFAcqChannelOffset
	ScGetFAcqChannelSign
	ScGetFAcqChannelType
	ScGetFAcqChannelUnit
	ScSetFAcqChannelNumber
	ScGetFAcqDataLength
	ScGetFAcqData
	ScSetFAcqDataSize

	4.4	File Operation and Transfer API
	ScSetCurrentDrive
	ScGetCurrentDrive
	ScSetCurrentDirectory
	ScGetCurrentDirectory
	ScGetFileNum
	ScGetFileInfo
	ScDeleteFile
	ScDownloadFile
	ScUploadFile
	ScSaveTriggerWDF
	ScSaveFreeRunWDF
	ScSaveSetup
	ScLoadSetup
	ScGetFileList
	ScGetFileInfoList

	4.5	DLL Linking Method

	Chapter 5	Appendix
	5.1	Data Acquisition Function
	Free Run Mode
	Trigger Mode

	5.2	Flash acquisition data access library
	5.3	How to Use Communication Commands
	5.4	Migration to ScopeCorder SDK
	5.5	Comparison with the SL1000 Control API (SxAPI)
	5.6	Sample Programs
	Reconnect instruments and set measurement modes (reopen)
	Data acquisition free run (freerun SingleUnit)
	Data acquisition free run for multi-unit synchronization (freerun MultiUnit)
	Data acquisition trigger (trigger SingleUnit)
	Data acquisition trigger for multi-unit synchronization (trigger MultiUnit)
	Flash acquisition data access (flashacquition)
	File operation and transfer

